DELTA AND PINE LAND
Guia de Manejo para Algodón
CONTENIDO

INTRODUCCIÓN ... 5

Capítulo 1 – PRESIEMBRA
SELECCIÓN DE VARIEDAD ... 7
 Caracteres Transgénicos .. 7
 Características Agronómicas ... 9
SIEMBRA ... 9
 Temperatura de Suelo ... 9
 Pronóstico del Clima ... 11
 Humedad de Suelo .. 12
 Consejos de Control Pre- emergente de Malezas 13
 Preparación de la Cama de Siembra 14
 Profundidad de Siembra .. 14
 Densidad de Siembra ... 15
 Fertilización ... 16
 Enfermedades de Plántulas y Tratamientos 17
DECISIONES DE RESIEMBRA .. 17
 Nemátodos ... 19
 Emergencia ... 19

Capítulo 2 – INICIO DEL CULTIVO
POBLACION DE PLANTAS ... 21
MONITOREO DEL CRECIMIENTO ... 23
 Fisiología del Crecimiento .. 24
 Crecimiento Radicular ... 25
 Crecimiento Balanceado ... 26
 Desarrollo de Nuevas Ramas .. 27
 Formación y Retención de Botones Florales 29
MONITOREO DE LA PLANTA DE ALGODÓN 30
MANEJO DEL CRECIMIENTO .. 31
 Uso de Reguladores de Crecimiento 31
 Fertilización ... 33
 ENFOCANDO EL CRECIMIENTO CON REGULADORES. 32
 Irrigación ... 35
MANEJO DE PLAGAS .. 35
CONTENIDO

Control de Malezas .. 35
CONTROL TOTAL DE MALEZAS. 36
Control de Insectos ... 37

Capítulo 3 - Etapa Intermedia del Cultivo

MONITOREO DEL CRECIMIENTO .. 39
Altura de Planta .. 39
Nudos del Tallo Principal ... 40
Nudos Formando Botones Florales o Nudos Sobre Flor Blanca 40
Retención de las 5 Ramas Fructíferas Inferiores 40
Retención de las 5 Ramas Fructíferas Superiores 41
Máxima Distancia de Entrenudos .. 41
Manejo Para Calidad de Fibra ... 41

MANEJO BASADO EN MEDICIONES. 42
Uso de Reguladores de Crecimiento 43
Manejo de la Fertilización Nitrogenada Post-floración 44
Fertilización ... 45
Irrigación ... 46
MANTENIMIENTO DEL VALOR Y LA VIABILIDAD DE LA TECNOLOGIA .. 47

MANEJO DE INSECTOS ... 48
Monitoreo de Insectos en Algodones Bollgard 48
Complejo Bellotero y Gusano Rosado 49
Otra Plagas ... 50

PUDRICIÓN DE CÁPSULAS ... 51

Capítulo 4 - Final del Cultivo y Post-Cosecha

DETERMINACIÓN Y UTILIDAD DEL “CUT-OUT” 53

MANEJO DEL CRECIMIENTO AL FINAL DEL CICLO 54
Interpretación y Utilidad de Resultados de Evaluaciones de Variedades 55
Defoliación ... 56

Cosecha .. 58

ALMACENAMIENTO EN MÓDULOS 59
Colaborar a Bajar Niveles de Insectos 59

MUESTREO DE SUELO POST-COSECHA 60

FUENTES .. 61

ÍNDICE ... 62
INTRODUCCIÓN

El algodón ha sido sembrado durante tanto tiempo en algunas zonas del mundo, que se considera como parte de la historia regional. Por el otro lado, existen productores que han regresado o se han iniciado en el cultivo del algodón por los avances que se han registrado en la industria. Durante los últimos 10 años, la industria en su conjunto ha aprendido mucho sobre el manejo del cultivo para aumentar su productividad. Las variedades de algodón de D&PL han estado con el sector algodonero durante todo este período de cambio, marcando el camino. Como compañía, DELTA AND PINE LAND CO., está comprometida a llevarle al productor de algodón, productos de valía a través de genética, tecnología e información sobre manejo agronómico.

El desarrollo de variedades transgénicas ha aumentado el grado de sofisticación de la toma de decisiones de manejo. Aún mas, los avances en genética han permitido que el agricultor haga una selección de variedades a la medida, aprovechando los aumentos del potencial de producción, resistencia a enfermedades o cualquier otro carácter que se ajuste a las necesidades específicas de sus campos y sistemas de producción. Esto significa un cambio en prácticas de manejo, ya que el productor no está usando una sola variedad en sus campos o a través de los años. En estos tiempos debemos entender el estado de desarrollo del cultivo y tomar las decisiones de manejo de acuerdo a esa situación en particular para poder maximizar los rendimientos.

Esta GUIA DE MANEJO PARA ALGODÓN es un resultado tangible de nuestra dedicación de llevarle al productor de algodón, productos de valía a través de genética, tecnología e información sobre manejo agronómico. Conforme usted lea este libro o lo use como referencia a lo largo de la temporada, esperamos que lo provea de información y herramientas útiles para obtener una cosecha redituable. Hemos recabado información de gran cantidad de zonas algodoneras, alguna de esta información ha sido generada por nuestro equipo de Servicios Técnicos, así como por Universidades y Extensionistas.
Introducción

Hemos organizado este libro en cuatro secciones, cada una de ellas representa una parte específica del ciclo productivo.

I. Presiembra
Cubre temas que necesitan considerarse antes de y durante la siembra.

II. Inicio del Cultivo
Iniciando con emergencia hasta inicio de la formación de botones florales.

III. Etapa Intermedia del Cultivo
Engloba todos los aspectos del desarrollo y manejo relativos a la floración hasta el fin de la floración efectiva.

IV. Final del Cultivo y Post-Cosecha
Fin de la floración efectiva, defoliación y cosecha, así como aspectos a considerarse posteriores a cosecha.
Selección de Variedad

Una de las primeras decisiones importantes que un productor de algodón debe tomar cada temporada, es la de cual variedad sembrar. Anteriormente, la selección de variedades era un proceso relativamente sencillo, pero como resultado de los actuales avances en tecnología, la decisión se está volviendo más complicada. Esta decisión se hará aún más complicada e importante en el futuro, conforme el número de caracteres transgénicos así como el de variedades en las que se encuentren insertados también aumente. Como consecuencia, el analizar que cabida tienen las nuevas variedades y tecnologías en cada campo cobra mayor relevancia. El objetivo final, sin embargo, sigue siendo el mismo: escoger aquella o aquellas variedades cuyo uso redundará en una mayor utilidad, a través de mayor adaptabilidad, rendimiento o una reducción de costos en insumos.

Caracteres Transgénicos

El atractivo de los nuevos caracteres transgénicos puede ser muy fuerte, y para un gran número de productores el sembrar variedades transgénicas es la decisión correcta. Sin embargo, es prudente y sensato el evaluar cualquier variedad nueva en una escala limitada durante su primer año de liberación comercial, al menos que el avance tecnológico sea tan benéfico que haga que valga la pena tomar el riesgo de plantar un alto porcentaje de la superficie con la nueva tecnología. Cuando el productor ya ha sembrado la contraparte convencional (variedad recurrente, de la cual proviene la variedad transgénica), el sembrar la variedad transgénica se vuelve menos arriesgado. Sin embargo se debe tener en cuenta que, como cualquier otra nueva variedad, las variedades transgénicas pueden variar con respecto al progenitor recurrente en cierto grado. Las recomendaciones contenidas en esta guía deberán ayudar al manejo de estas nuevas variedades.
En la siguiente Tabla se mencionan algunos de los impactos que el uso de caracteres transgénicos pueden tener sobre algunas de las variables de la producción de algodón y que son de tomarse en cuenta al momento de decidir si es conveniente usar una variedad transgénica. La Universidad de Arkansas en Monticello desarrolló esta Tabla y recomienda que las utilidades sean las que inclinen la balanza al tener que decidir entre el uso de variedades convencionales o transgénicas. Cada campo debe considerarse por separado ya que las variables reaccionan en gran parte a las particularidades del medio ambiente.

Principales Variables en la toma de decisión del uso de variedades transgénicas

<table>
<thead>
<tr>
<th>Variable</th>
<th>Impacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insumos</td>
<td>Insecticidas: el uso de la tecnología Bollgard® puede significar una reducción en el uso de insecticidas.</td>
</tr>
<tr>
<td></td>
<td>Herbicidas: el uso de la tecnología Solución Faena (Roundup Ready)® puede significar un cambio en el espectro de productos empleados.</td>
</tr>
<tr>
<td>Mano de Obra</td>
<td>El uso de la tecnología Solución Faena (Roundup Ready)® puede significar una disminución en limpias manuales</td>
</tr>
<tr>
<td>Rendimientos</td>
<td>El uso de la tecnología Bollgard® puede aumentar los rendimientos aún en casos de niveles de infestación por debajo del umbral económico. En el caso de la tecnología Solución Faena (Roundup Ready)® esto dependerá de los niveles de infestación y del tipo de maleza presente.</td>
</tr>
<tr>
<td>Costo de la Tecnología</td>
<td>El uso de variedades transgénicas implica el pago de una Licencia de Uso de Tecnología, por lo que el productor debe hacer un cálculo del costo - beneficio</td>
</tr>
<tr>
<td>Manejo de Riesgos</td>
<td>El uso de la tecnología Bollgard® disminuye el riesgo de daño por larvas de Lepidópteros, ¿cual es la probabilidad de que estas se presenten en la zona?</td>
</tr>
</tbody>
</table>
Consideración: Cambio Neto en Utilidades =
(ingreso adicional + reducción en costos) - (costo adicional + reducción en ingreso)

CARACTERÍSTICAS AGRONÓMICAS

D & PL recomienda que se seleccionen variedades para cada campo de manera individual. La selección de la variedad a usarse en cada campo debe basarse considerando cual será el comportamiento de la variedad bajo las condiciones ambientales específicas, fecha de siembra, tipo de suelo y prácticas de manejo. Debido a que las condiciones ambientales varían de año en año, el seleccionar una variedad de comportamiento estable puede ayudar a obtener rendimientos consistentes en el transcurso de distintas temporadas. En la siguiente Tabla se detallan las características que deben tomarse en cuenta y asignarles un grado de prioridad. Una vez hecha esta asignación, se puede comparar contra las variedades que existen en el mercado.

SIEMBRA

Poner la semilla en el suelo en el momento correcto requiere de un acto de equilibrio. Las condiciones del momento, así como el pronóstico de los siguientes 10 días, son componentes críticos al momento de decidir cuando sembrar. El manejo de un campo después de haber emergido puede ser sensible al calendario ya que existen métodos para apurar un cultivo sembrado tardíamente para madurar antes de lo esperado. Pero la siembra en sí no debe de realizarse sólo porque estemos acostumbrados a que el cultivo esté establecido para cierta fecha. Tener un cultivo que fue sembrado tarde, puede ser preferible a sembrar antes de que las condiciones sean las adecuadas. Y aunque el cuando es un componente clave de la siembra, es un concepto basado en varios factores, no en el calendario.

TEMPERATURA DEL SUELO

La germinación y emergencia del algodón se ven favorecidas cuando las temperaturas del suelo son de 65° Farenheit o mayores (18° Celsius). Los 18° C a las 8:00 AM y a una profundidad de 10 cms, son una buena regla, porque representa la temperatura del suelo más baja en las últimas 24 horas. Por lo tanto, para que el suelo haya alcanzado una temperatura de 18° C, la acumulación de calor debe de haber sido buena durante los últimos 3 a 4 días.

Consideración: siembre cuando la temperatura del suelo sea de por lo menos 18° C a las 8:00 AM y de 10 a 15 cms de profundidad en un período de 3 a 5 días consecutivos

El tiempo requerido para que el suelo se caliente depende de varios factores:

Temperatura del Aire — Temperaturas del aire altas elevan la temperatura al transferirle energía por convección. La temperatura del aire por sí sola es un mal indicador del momento de siembra apropiado.
SELECTIÓN DE LOS CARACTERÍSTICAS AGRONÓMICAS ADECUADAS PARA SU OPERACIÓN

<table>
<thead>
<tr>
<th>IMPORTANCIA</th>
<th>CARACTERÍSTICA AGRONÓMICA</th>
<th>INTERROGANTE</th>
<th>NECESIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: MUY IMPORTANTE</td>
<td>Madurez</td>
<td>Que ciclo permite maximizar el potencial de rendimiento en la región</td>
<td>Ciclo Corto</td>
</tr>
<tr>
<td>2: IMPORTANTE</td>
<td>Altura de Planta</td>
<td>Cuanto tiende a crecer el algodón en ese campo</td>
<td>Ciclo intermedio</td>
</tr>
<tr>
<td>3: SIN IMPORTANCIA</td>
<td>Tamaño de semilla/vigor</td>
<td>¿Es el tamaño de semilla un factor determinante? ¿Siembra en condiciones aún frías?</td>
<td>Ciclo Largo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Textura de la Hoja</td>
<td>¿Hay insectos en la zona que hagan de la hoja lisa algo atractivo?</td>
<td>Lisa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semi-lisa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vellosa</td>
</tr>
<tr>
<td></td>
<td>Características de Fibra</td>
<td>¿Existe una característica en particular que se necesite maximizar o disminuir?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longitud</td>
<td>Promedio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Buena</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muy buena</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excelente</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistencia</td>
<td>Promedio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Buena</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muy buena</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excelente</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Micronaire</td>
<td>Tendencia baja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tendencia media</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tendencia alta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% de Fibra</td>
<td>Alto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bajo</td>
</tr>
</tbody>
</table>
Luz Solar — el calor radiante de un día soleado es absorbido por el suelo y calienta al suelo más rápidamente que la temperatura del aire por sí sola. Por lo tanto, los días soleados calientan más rápidamente al suelo aún si la temperatura se mantiene sin cambio.

Humedad — la humedad en la superficie causará que el suelo se enfríe al evaporarse. Por esto, entre más húmedo esté el suelo, mayor energía (luz solar y/o alta temperatura del aire) necesitará para calentarse.

Textura y Color — la textura y el color del suelo afectan la velocidad a la que el suelo se calienta. Los suelos arenosos retienen menos agua y se calientan más rápidamente que los suelos arcillosos. Suelos que sean de color claro reflejan más luz que suelos oscuros y, por lo tanto, los suelos oscuros tienden a calentarse más rápidamente que los suelos claros. Es de tenerse en cuenta que si la textura del suelo no es uniforme en el campo se pueden apreciar diferencias en la emergencia.

Cobertura y Residuos de Cosecha — aquellos campos con un alto contenido de residuos de cosecha se calentarán más lentamente que campos en el que durante la preparación, el equipo haya minimizado la cobertura del suelo. Esto se debe a que la cobertura o residuos de cosecha promueven una mayor retención de humedad en la superficie del suelo.

PRONÓSTICO DEL CLIMA

Las Unidades Calor (UC60) (GD15.5) describen el potencial para que el algodón crezca y son una excelente herramienta para evaluar las condiciones para la siembra. La investigación ha demostrado que cuando la acumulación de UC60 (GD15.5) en los primeros 5 días posteriores a la siembra es menor a 10, las condiciones son muy desfavorables y el potencial de rendimiento del cultivo puede verse disminuido. De manera adicional, el estrés causado hasta este punto puede significar cambios en su programa de manejo para compensar por poblaciones no uniformes y plantas débiles y enfermas. El cálculo de las UC60 (GD15.5) se puede hacer a partir de las temperaturas máximas y mínimas diarias. Estas se pueden obtener ya sea de lecturas de termómetros propios o de datos de Campos Experimentales, Universidades y Comisión Nacional del Agua.

Consideración: Calcule las UC60 empleando la siguiente fórmula:

\[
DD60 = \left(\frac{\text{Temperatura Máxima}^* + \text{Temperatura Mínima}^*}{2} - 60 \right)
\]

*: Temperaturas en ° Farenheit. °F = (°C multiplicado por 1.8) más 32

<table>
<thead>
<tr>
<th>DD60 (GD15.5) próximos cinco días</th>
<th>Condiciones para la siembra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menos de 10</td>
<td>Muy pobres</td>
</tr>
<tr>
<td>11 a 15</td>
<td>Marginales</td>
</tr>
<tr>
<td>16 a 25</td>
<td>Adecuadas</td>
</tr>
<tr>
<td>Mayor a 25</td>
<td>Muy buenas</td>
</tr>
</tbody>
</table>
El algodón puede sufrir daños por enfriamiento cuando la temperatura del suelo sea menor de 10° C y la severidad del daño aumentará entre mayor sea el tiempo de exposición al frío. El cultivo es más susceptible al daño por frío en dos etapas:

1) cuando la semilla inicia la absorción de agua (imbibición) y
2) los primeros dos días después de la siembra

La imbibición es un periodo sensible debido a que el contenido de humedad de la semilla se incrementa de 6-10% a 50% en un lapso de 5 horas, con la mitad de este aumento ocurriendo en los primeros 30 minutos. Temperaturas tan bajas como 10° C no parecen influir de manera negativa el vigor de la semilla. Sin embargo, estas bajas temperaturas incrementarán la presión de las enfermedades con su consecuente pérdida de plantas. Si las temperaturas llegan por debajo de los 5° C en esta etapa, la semilla morirá. Por lo tanto, la temperatura mínima a profundidad de siembra en las primeras 6 horas después de la siembra es especialmente importante.

Los primeros dos a cuatro días después de la siembra son cuando la radícula empieza a emergir de la semilla, con temperaturas calientes conduciendo a una rápida emergencia. El efecto adverso de bajas temperaturas durante este periodo es acumulativo y una disminución en el rendimiento puede estar relacionada con las horas acumuladas por debajo a los 5° C. El daño durante esta etapa impacta en la capacidad de la plántula para sintetizar proteínas, lo cual puede limitar el rendimiento.

Debido a que el sembrar en suelos fríos es arriesgado y puede tener tales efectos negativos, una siembra retrasada es preferible a sembrar bajo condiciones dudosas. Mediante un manejo cuidadoso e intensivo, es posible obtener una cosecha temprana, con altos rendimientos, sin tener una fecha de siembra temprana en la mayor parte de las zonas algodoneras de México.

HUMEDAD DEL SUELO

El sembrar en un suelo con humedad adecuada, si es que no se va a regar posteriormente a la siembra, es crítico. Las semillas de algodón absorben humedad con facilidad aún en un suelo relativamente seco e inician el proceso de germinación. Si la semilla se ha ablandado, deberá existir una adecuada humedad de lo contrario la plántula morirá. Además, debemos asegurarnos de que habrá suficiente agua no solo para germinar la semilla, sino para permitir su emergencia.

Al mismo tiempo, el algodón es susceptible a los suelos anegados. Esto es debido a que las semillas de algodón tienen altos niveles de aceite, lo cual las hace sensibles a niveles bajos de oxígeno. Por este motivo, un buen drenaje es importante para mejorar la disponibilidad de oxígeno en el suelo a la profundidad de la semilla. Esto es especialmente importante en suelos pesados, los cuales de manera natural tienen una mayor capacidad de retención de agua, y por lo mismo, menos oxígeno.
CONSEJOS PARA EL CONTROL PREEMERGENTE DE MALEZAS

Con la aparición del algodón con la Tecnología Solución Faena (Roundup Ready)MR, el control de malezas está cambiando. Una de las áreas que mayores cambios puede experimentar, es el uso de herbicidas de pre-emergencia. Si usted está considerando utilizar variedades de algodón con la Tecnología Solución Faena (Roundup Ready)MR en sus campos, los pros y contras de los herbicidas de preemergencia deberán de considerarse. Cada campo debe ser evaluado por separado, ya que los herbicidas de preemergencia tienen una función definida en algunos casos.

De acuerdo al Dr. Bob Hayes de la Universidad de Tennessee en Jackson, existen varios beneficios y riesgos asociados con un herbicida de preemergencia.

Beneficios

1. Un control de malezas mejorado y una disminución de la interferencia de las malezas
2. A menudo permite un ventana de aplicación más amplia de herbicidas de postemergencia
3. Un modo de acción distinto puede ayudar a prevenir un cambio en las malezas dominantes y el desarrollo de malezas resistentes
4. Los herbicidas de preemergencia a menudo controlan malezas que son difíciles de controlar con herbicidas de postemergencia
5. Los herbicidas de preemergencia pueden proveer un control durante periodos en los cuales la eficacia de herbicidas de postemergencia se puede ver reducida por falta de humedad

Riesgos

1. Fitotoxicidad a la plántula de algodón que se puede ver traducido en retraso en el desarrollo y reducción del rendimiento
2. Puede eliminar cultivos alternativos en caso de que falle el establecimiento del cultivo de algodón
3. Incremento de los costos de producción
4. Sin una humedad adecuada los beneficios en preemergencia pueden no notarse
5. Herbicidas residuales de preemergencia aumentan la presión de selección de las malezas
6. Las malezas pueden escapar del efecto del herbicida y requerir de medidas de control postemergente adicionales
PREPARACIÓN DE LA CAMA DE SIEMBRA

Habiendo mencionado la importancia de un buen drenaje en suelos pesados, una breve discusión sobre la preparación de la cama de siembra es lo lógico. Existen diferencias regionales en los detalles sobre la preparación del terreno para la siembra, en algunas regiones se deja surcado desde el Otoño, en otras se esperan hasta justo antes de sembrar y aún en algunas se siembra en plano sin surcar. Las principales razones para que se den estas diferencias tienen que ver con la oportunidad de la siembra en el siguiente ciclo, retención de humedad y conservación de suelo.

Cualesquiera que sean las diferencias en el tipo de cama de siembra o el momento de la preparación, la importancia de iniciar el ciclo con un campo limpio, libre de malezas no está limitada por la geografía. Las estrategias para alcanzar ese objetivo varían según las regiones, algunas prefiriendo el uso de herbicidas residuales y otras no. Pero la reciente llegada de la Tecnología Solución Faena (Roundup Ready) y otras variedades tolerantes a herbicidas, está cambiando la ecuación.

La decisión que se tome en este momento sobre control de malezas debe abarcar todo el ciclo:

Especies: ¿Qué especies de malezas están presentes? (Una adecuada identificación de malezas en cada campo es crítica.) ¿Se pueden controlar las malezas solo con herbicidas de postemergencia?

Tolerancia a Herbicidas: ¿Planea usar una variedad tolerante a algún herbicida? Si es así, muchos investigadores sugieren el uso de un herbicida de distinta clase en presiembra como precaución para evitar un cambio en el espectro de malezas o creación de resistencia.

Oportunidad: ¿Necesita de un preemergente, sólo o con cultivos? ¿Le será posible establecer un diferencial de alturas sin un preemergente residual? ¿Podrá entrar la maquinaria al campo cuando sea necesario?

Equipo: ¿Tiene el equipo adecuado para aplicar el producto elegido?, ¿está calibrado?, ¿Lo ha reparado o ha reemplazado partes gastadas? Las aplicaciones postemergentes dirigidas tanto en variedades transgénicas como convencionales deben ser aplicadas con precisión para evitar daños. Todas las aplicaciones deben ser uniformes para poder ser eficaces.

Rotación: ¿Estará rotando este campo con otro cultivo la siguiente temporada? De ser así, hay que considerar que algunos herbicidas residuales pueden dañar a gramíneas.

PROFUNDIDAD DE SIEMBRA

Comúnmente se acepta que la profundidad de siembra óptima es entre 2 y 5 cms. La profundidad adecuada variará de acuerdo al tipo de suelo, los suelos pesados pueden retrasar la emergencia por lo que recomienda sembrar menos profundo que en suelos arenosos. El viento también influye en la profundidad óptima, para evitar que las radículas queden en suelo seco se deberá sembrar más profundo en zonas con vientos. La posibilidad de formación de costras que dificulten la emergencia de las plántulas también debe tenerse en cuenta.

Consideración: Es importante el revisar y ajustar las sembradoras para mantener un espaciamiento y profundidad uniformes, especialmente en campos de textura variable.
Densidad de Siembra

La densidad de siembra es una decisión que tiene importantes efectos, algunos de los cuales no pueden ser modificados al menos que se resiembre. Si la densidad exacta a usar está en duda, es mejor equivocarse hacia arriba que hacia una densidad baja.

Para calcular la densidad de siembra es mejor hablar en términos de semillas por hectárea o de semillas por metros, ya que así la variedad a sembrar no influye. El usar kilos por hectárea no toma en cuenta las diferencias en tamaño de semilla que existe entre variedades, las cuales pueden ser significativas. Se debe establecer la densidad de siembra en base a la población final deseada (como determinar esta se tratará en el siguiente capítulo).

Efecto de la Población en el Rendimiento (surcos entre 80 y 100 cm)

Las densidades de siembras varían de región en región, siendo de 13 a 16 semillas por metro lo más común. La población final buscada es entre 100,000 y 150,000 plantas por hectárea o 10 a 15 plantas por metro.

El obtener una población final deseada puede lograrse mediante el cálculo de semillas por metro. Con la adopción en algunos casos de siembras en surcos más angostos se han aumentado las poblaciones finales, pero esto ha sido más como resultado de reducir el espacio entre surcos que las plantas por metro. La cantidad de semilla a sembrar se pueden ajustar disminuyéndola conforme las condiciones de siembra se acercan al ideal.

Consideración: Población final deseada multiplicada por 1.25 (para ajustar a un 75% combinado de germinación y emergencia) = semilla a sembrar
POBLACIÓN FINAL SEGÚN SEMILLAS POR METROS SEMBRADAS

<table>
<thead>
<tr>
<th>semillas por m ancho de surco</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta Por Hectarea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semilla Por Hectarea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 cm</td>
<td>118500</td>
<td>158000</td>
<td>237000</td>
<td>316000</td>
<td></td>
</tr>
<tr>
<td>25 cm</td>
<td>90000</td>
<td>120000</td>
<td>180000</td>
<td>240000</td>
<td>270000</td>
</tr>
<tr>
<td>77 cm</td>
<td>58500</td>
<td>78000</td>
<td>87750</td>
<td>117000</td>
<td>116850</td>
</tr>
<tr>
<td>96 cm</td>
<td>70500</td>
<td>93750</td>
<td>93750</td>
<td>125000</td>
<td>117200</td>
</tr>
<tr>
<td>1 m</td>
<td>67500</td>
<td>90000</td>
<td>90000</td>
<td>120000</td>
<td>112500</td>
</tr>
</tbody>
</table>

Consideración: estos cálculos son considerando una emergencia equivalente al 75% de las semillas sembradas

FERTILIZACIÓN

El conocer y manejar los niveles de fertilidad del suelo a lo largo del ciclo es importante para asegurar que los crecimientos vegetativos y reproductivos sean los adecuados. Aunque ciertos nutrientes, especialmente Nitrógeno son importantes para un sano desarrollo del cultivo, los niveles necesarios de cada uno varían según diversos factores, incluyendo tipo de suelo y disponibilidad de agua/ riego. Como consecuencia de esto, el manejo de fertilizantes depende de los resultados de análisis de suelo en presiembra y de pecíolos durante el desarrollo del cultivo (ver los capítulos de Inicio del cultivo y Mitad del Cultivo para mayor información).

NUTRIENTES NECESARIOS PARA EL ALGODÓN

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>Necesidades Estimadas kilos/ Paca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primarios</td>
<td></td>
</tr>
<tr>
<td>Nitrógeno (N)</td>
<td>20 - 27</td>
</tr>
<tr>
<td>Fósforo (P)</td>
<td>9 - 11</td>
</tr>
<tr>
<td>Potasio (K)</td>
<td>18 - 20</td>
</tr>
<tr>
<td>Secundarios</td>
<td></td>
</tr>
<tr>
<td>Calcio (Ca)</td>
<td>3 - 4</td>
</tr>
<tr>
<td>Magnesio (Mg)</td>
<td>4 - 6</td>
</tr>
<tr>
<td>Azufre (S)</td>
<td>4 - 6</td>
</tr>
<tr>
<td>Micronutrientes</td>
<td></td>
</tr>
<tr>
<td>Boro (B)</td>
<td>menos de 1</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>menos de 2</td>
</tr>
<tr>
<td>Manganeso (Mn)</td>
<td>menos de 4</td>
</tr>
<tr>
<td>Fierro (Fe)</td>
<td>menos de 2</td>
</tr>
<tr>
<td>Cobre (Cu)</td>
<td>menos de 0.3</td>
</tr>
</tbody>
</table>
Consideración: los suelos ácidos y los alcalinos pueden evitar que los nutrientes puedan ser tomados por la planta del suelo, por lo que se recomienda medir el pH del suelo. La regla general para algodón es un pH entre 6.0 y 6.5.

Enfermedades de Plántulas y Tratamientos

En muchas ocasiones, las condiciones climáticas al inicio de la temporada favorecen el desarrollo de enfermedades que afectan a las plántulas. Debido a que no se puede saber que tipo de clima se va a presentar, el tener una semilla tratada es esencial. DELTA AND PINE LAND CO. tiene disponibles los tratamientos más avanzados de la industria para el control de Pythium y Rhizoctonia. Los beneficios de utilizar semilla tratada y un fungicida granulado en el hilo de siembra pueden ser vistos durante la emergencia y en ocasiones hasta en la cosecha.

Decisiones de Resiembra

Los investigadores de la Universidad Estatal de Carolina del Norte, Keith Edmisten y Alan York, recomiendan a los productores a considerar los siguientes tres factores como los principales al momento de decidir si resiembra o no.

1. **Población** — El algodón puede producir buenos rendimientos con aproximadamente la mitad de la población óptima siempre y cuando las plantas estén uniformemente distribuidas. Efectúe conteos de población en varias partes del campo. La resiembra pudiera ser necesaria en solo algunas partes del campo. Es preferible resiembra toda una sección del campo para poder manejarla como una unidad, esto es particularmente útil si se piensa realizar aplicaciones dirigidas de herbicidas postemergentes o en el uso de reguladores de crecimiento.

2. **Uniformidad de la Población** — Los tramos de surco sin plantas ameritan la resiembra si son mayores a 80 cm. Pérdidas de población del orden del 20 a 30% serán de poca consecuencia si los tramos sin plantas están rodeados con surcos bien poblados, al llenar éstos el espacio vacío. Si por el otro lado, varios surcos muestran tramos con fallos en la misma zona se ameritará la resiembra.

3. **Condición del Cultivo** — Si se tienen una población razonable con una buena distribución, hay que inspeccionar las plantas para determinar si serán capaces de recuperarse. Los siguientes puntos pueden ayudar a efectuar esta determinación:

 ◗ Plantas rotas por debajo de los cotiledones no sobrevivirán
 ◗ En condiciones marginales de clima, únicamente sobrevivirán plantas con raíces, tallos y terminales sanos
 ◗ Una apariencia acuosa y negruzca de la raíz indica la presencia de patógenos que pueden causar más daño
 ◗ Plantas con raíces manchadas pero intactas y firmes tienen buena posibilidad de recuperarse
 ◗ Si el cultivo había emergido sano antes de que los problemas se presentaran tiene más probabilidades de recuperación a que si siempre hubiera estado débil y enfermizo

Si usted tiene una población adecuada pero está incierto acerca de la sobrevivencia de las plantas restantes, se sugiere que se dejen pasar dos o tres días de buen clima y hacer una reevaluación. Las plantas que han sufrido estrés mostrarán signos de recuperación, pero las plantas enfermas morirán rápidamente.
Sistema De Puntuación Para Enfermedades

(Para considerar el uso de fungicidas granulados)

<table>
<thead>
<tr>
<th>Temperatura del Suelo:</th>
<th>Promedio de 3 días a 10 cm de profundidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Menos de 18° C</td>
<td>75</td>
</tr>
<tr>
<td>B. 18° C a 22° C</td>
<td>25</td>
</tr>
<tr>
<td>C. Mayor de 22° C</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pronóstico de Siguientes 5 Días:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Más frío y más húmedo</td>
</tr>
<tr>
<td>B. Más frío</td>
</tr>
<tr>
<td>C. Más húmedo</td>
</tr>
<tr>
<td>D. Más caliente</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad de Semilla: Germinación en frío</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Menos de 59%</td>
</tr>
<tr>
<td>B. 60 a 69%</td>
</tr>
<tr>
<td>C. Mayor de 70%</td>
</tr>
</tbody>
</table>

| **Historial del Campo:** Presencia de enfermedades en años anteriores |
|--------------------------|--|
| A. Severa | 100 |
| B. Moderada | 50 |
| C. Baja | 0 |

<table>
<thead>
<tr>
<th>Sistema de Labranza: Preparación del Terreno</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Cero Labranza</td>
</tr>
<tr>
<td>B. Mínima labranza</td>
</tr>
<tr>
<td>C. Convencional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado de la Cama de Siembra</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Surcos firmes bien formados</td>
</tr>
<tr>
<td>B. Surcos bajos y flojos</td>
</tr>
<tr>
<td>C. En plano</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Densidad de Siembra: Semillas por Metro</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Menos de 12</td>
</tr>
<tr>
<td>B. 15 a 18</td>
</tr>
<tr>
<td>C. Más de 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uso de Insecticida/ Nematicida Granulado en Hilo de Siembra</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Sí</td>
</tr>
<tr>
<td>B. No</td>
</tr>
</tbody>
</table>

Total:

TOTAL: si el total de puntos pasa de 100, se sugiere el uso de un fungicida granulado en el hilo de siembra. El tratar a la semilla con un fungicida adicional pudiera considerarse si el puntaje está entre 75 y 100. Si es menor a 75 el tratamiento con el que viene la semilla es suficiente.
El Dr. Melvin Newman de la Universidad de Tennessee en Jackson comenta que los productores a menudo ven el tratamiento adicional a la semilla o los fungicidas granulados como una costo adicional y no desde el punto de vista riesgo/beneficio. Los costos de una resiembra pueden ser considerables, pero los costos de tratamientos adicionales y fungicidas son relativamente bajos. Él y otros investigadores del Comité de Enfermedades del Consejo Nacional del Algodón de Estados Unidos desarrollaron el sistema de puntuación de la página anterior para decidir acerca del uso de fungicidas granulados en el hilo de siembra.

Nemátodos

Los nemátodos pueden ser un problema en todas las regiones algodoneras. Las variedades de algodón por lo general son evaluadas en su resistencia a la marchitez por Fusarium, la cual es una enfermedad relacionada estrechamente a los nemátodos. Las variedades resistentes generalmente son adecuadas para campos con poblaciones de nemátodos de bajas a moderadas. Sin embargo en casos de altas infestaciones se recomienda el uso de nematicidas o la rotación con otros cultivos menos susceptibles como el maíz. Debido a que el monitoreo de nemátodos debe realizarse durante el desarrollo del cultivo inspeccionando raíces en busca de agallas y el muestreo se debe hacer al final del ciclo, la discusión del muestreo para nemátodos se halla en el capítulo de manejo post-cosecha.

Emergencia

El monitorear la emergencia del cultivo puede ser importante ya que puede indicar la existencia de un problema si ésta no se presenta según lo esperado. Para casi todas las variedades se requiere una acumulación de 50 U C 60 desde la siembra a la emergencia. El momento preciso en que esta se presenta se puede definir de varias maneras, pero de manera práctica se puede decir que la emergencia se presenta cuando se ve “hilerear” el surco fácilmente. También corresponde muy de cerca con el momento en que tenemos suficiente población como para descartar la necesidad de una resiembra.

Si un campo de algodón no inicia la emergencia después de que se hayan acumulado de 50 a 60 U C 60, debe investigarse el motivo. Hay muchos motivos por los cuales un campo no emerja según lo previsto, siendo una excesiva profundidad de siembra o una falta o exceso de humedad las causas más comunes. La siguiente lista está diseñada para ayudar a encontrar las causas.
<table>
<thead>
<tr>
<th>Punto a Considerar</th>
<th>Posible Motivo o Solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>¿ Refleja el termómetro la temperatura en el campo? De no ser así el estimado de la acumulación de UC60 puede ser incorrecto</td>
</tr>
<tr>
<td>Profundidad de Siembra</td>
<td>Revise la profundidad de la semilla Semilla colocada a más de 5 cm de profundidad puede ser incapaz de emerger</td>
</tr>
<tr>
<td>Humedad</td>
<td>¿ Cual ha sido la condición de humedad en el campo desde la siembra? El suelo en contacto inmediato con la semilla debe permanecer siempre húmedo. Los suelos saturados así como los secos, a menudo previenen la emergencia</td>
</tr>
<tr>
<td>Cama de Siembra</td>
<td>¿ Se formó una costra? La formación de costras en la superficie obstaculiza la salida de la plántula. Si la costra es gruesa puede ameritar la resiembra</td>
</tr>
<tr>
<td>Plagas</td>
<td>¿ Hay presencia de plagas o enfermedades que estén impidiendo una emergencia oportuna? La pudrición de la semilla evita la germinación o emergencia y la enfermedades de plántulas pueden matar a éstas antes de que puedan emerger.</td>
</tr>
<tr>
<td>Inhibidores Químicos</td>
<td>¿ Pudiera haber problemas de residualidad por algún herbicida empleado el ciclo anterior o el presente? Es prudente llevar un registro de los herbicidas empleados. También dosis elevadas de herbicidas pueden afectar la emergencia. Pudiera haber algún otro tipo de producto químico en el suelo (fertilizantes o sales por ejemplo) causando un problema. Las sales y el exceso de fertilizante sobre todo cuando se aplica en banda pueden tener efectos en la emergencia.</td>
</tr>
</tbody>
</table>
INICIO DEL CICLO

Al iniciar la temporada, existen muchos temas que se vienen a la mente. Al observar el crecimiento y desarrollo del cultivo durante este periodo, debemos ir pensando en el potencial de producción que la temporada nos brinde. Las decisiones de manejo se deben tomar con esto en mente, ya sea el decidir la población final, monitorear el desarrollo de nuevos nudos o el control de plagas.

DENSIDAD DE POBLACION

Una de las primeras cosas que se deben hacer al inicio del ciclo es el determinar la población de plantas que se tiene en el campo, de tal manera que el manejo que éste reciba vaya de acuerdo a aquella. Existen diferentes métodos para estimar la población o densidad de plantas, todos ellos requiriendo que se hagan conteos de plantas en una distancia de surco determinada. Un método que se asemeja a nuestras indicaciones de siembra consiste en el número promedio de plantas por metro y luego utilizar la siguiente tabla para convertir este valor a plantas por hectárea.
Una vez que se haya determinado la población de plantas, es necesario ajustar el manejo de acuerdo a ésta. La siguiente tabla provee algunas guías generales sobre el crecimiento y el desarrollo de la planta de algodón en relación a la población, así como algunas de las prácticas de manejo a considerar para cada caso.
INICIO DEL CICLO

Comparación de los Efectos en el Desarrollo y Crecimiento del Algodón de Bajas, Medianas y Altas Densidades de Población

<table>
<thead>
<tr>
<th>Bajas Densidades</th>
<th>Altas Densidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>Claves de Manejo</td>
</tr>
<tr>
<td>Plantas más altas con más nudos totales</td>
<td>Iniciar uso de Cloruro de Mepiquat más temprano en el ciclo</td>
</tr>
<tr>
<td>Fructificación más temprana pero con una maduración más tardía</td>
<td>Continuar el uso de Cloruro de Mepiquat y Maduradores de cápsulas</td>
</tr>
<tr>
<td>Mayor susceptibilidad a Verticillium</td>
<td>Mayor necesidad de una buena defoliación</td>
</tr>
<tr>
<td>Mayor tolerancia a condiciones de sequía</td>
<td></td>
</tr>
<tr>
<td>Finalización de floración efectiva retrasada</td>
<td></td>
</tr>
<tr>
<td>Reducción de eficiencia en la cosecha mecanizada</td>
<td></td>
</tr>
</tbody>
</table>

Monitoreo del Crecimiento

Una vez que el cultivo ha sido establecido, es necesario monitorear el ritmo de crecimiento de la planta y determinar si este está avanzando adecuadamente. Aunque crecimiento y desarrollo varían de región en región, el ritmo de crecimiento está relacionado a la acumulación de unidades calor (UC 60) y en base a ellas debe ser bastante constante. Mediante un registro diario de acumulación de UC 60, productores y asesores pueden hacer estimaciones más precisas del crecimiento del cultivo y su posible desviación de parámetros aceptables.

Las UC 60 son una medida de la energía disponible a la planta para su crecimiento. La radiación solar es la fuente de energía para que la planta de algodón crezca a través de su efecto en la fotosíntesis y aunque las UC 60 no miden la cantidad de radiación solar disponible, son una excelente medida de la cantidad y ritmo de crecimiento del algodón basada únicamente en la temperatura.

Consideración: Para calcular las UC 60 utilice la siguiente fórmula

\[
\text{UC 60} = \left(\frac{\text{Temperatura Máxima} + \text{Temperatura Mínima}}{2} \right) - 60
\]

Esta ecuación es precisa siempre que la temperatura mínima sea mayor que el umbral inferior (60°F). Si las temperaturas mínimas son menores a 60°F (15°C), el método pierde consistencia.
INICIO DEL CICLO

Ciertos eventos del crecimiento y desarrollo del algodón ocurren a un determinado número de UC60 acumuladas a partir de la siembra. Aunque existen ciertas diferencias entre variedades, la mayoría responden de una forma lo suficientemente parecida como para poder elaborar un tabla de etapas de desarrollo en relación a las UC60 acumuladas. Hay que tener en cuenta que existen pequeñas diferencias entre variedades y que las condiciones ambientales (tales como disponibilidad de agua y fertilidad) también afectan al crecimiento.

ETAPAS DE DESARROLLO EN BASE A LA ACUMULACIÓN DE UC60

<table>
<thead>
<tr>
<th>Etapas</th>
<th>Número de Días</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Promedio</td>
</tr>
<tr>
<td>siembra a emergencia</td>
<td>7</td>
</tr>
<tr>
<td>emergencia a 1era Rama fruct.</td>
<td>24</td>
</tr>
<tr>
<td>emergencia a 1er botón floral</td>
<td>32</td>
</tr>
<tr>
<td>emergencia a 1era flor</td>
<td>55</td>
</tr>
<tr>
<td>emergencia a máx. floración</td>
<td>90</td>
</tr>
<tr>
<td>emergencia a 1er capullo</td>
<td>110</td>
</tr>
<tr>
<td>emergencia a 60% de apertura</td>
<td>140</td>
</tr>
</tbody>
</table>

FISIOLOGÍA DEL CRECIMIENTO

Ya que la radiación solar es la fuente de energía para el crecimiento de la planta, el entender como se reparte ésta, especialmente durante etapas con bajos niveles de luz solar, es importante porque el manejo puede ayudar a enfocar la energía en caso necesario. La ilustración en esta página puede ser empleada como base para entender como la planta canaliza la energía.

Como lo indica la ilustración, la radiación solar es capturada por hojas, brácteas, tallos y paredes de las cápsulas. Mientras mayor sea la intensidad de la radiación solar y conforme el área foliar y la fertilidad aumenten, mayor será la energía (también llamados fotosintatos) disponible para producir carbohidratos que fluyan al tanque de reserva. En el fondo del tanque de energía o fotosintatos hay una llave que está permanentemente abierta, permitiendo la salida constante de energía. Esto es debido a que la respiración normal de la planta requiere energía para mantener viva a la planta.

MODELO CONCEPTUAL QUE ILUSTRA LA RELACIÓN ENTRE LA OFERTA Y DEMANDA FOTOSINTÉTICA
Una vez iniciada la formación de botones florales, los carbohidratos son empleados para generar crecimiento vegetativo y reproductivo simultáneamente. Las prácticas de manejo exitosas manipulan el crecimiento vegetativo para aumentar la energía disponible para el desarrollo de las cápsulas. El diagrama de abastecimiento y demanda del algodón tiene dos salidas a los lados del tanque de almacenamiento que representan el consumo de energía para estos tipos de crecimiento. La cantidad de energía que fluye por estas salidas depende del tamaño y edad ya sea del componente vegetativo o del componente reproductivo.

Conforme la temporada progresa a partir del inicio de floración, la carga de las cápsulas incrementa la demanda de carbohidratos. Al aumentar la demanda de las cápsulas, el nivel de fotosíntesis en el tanque de almacenamiento disminuye y eventualmente cae por debajo del nivel de la salida del consumo vegetativo. Cuando esto ocurre ya no hay energía disponible para continuar el crecimiento vegetativo y se presenta el “cut-out” (cesación de crecimiento vegetativo). Esto es la progresión normal, pero existen excepciones cuando por varios motivos, la retención y desarrollo de cápsulas es menor de lo normal debido a daño de insectos o mal clima. Si la retención de cápsulas es baja, una mayor cantidad de carbohidratos estará disponible para el crecimiento vegetativo. Esto a menudo aumenta la necesidad de prácticas de manejo para evitar un crecimiento vegetativo excesivo. (Ver sección de reguladores de crecimiento)

Crecimiento Radicular

Debido a que las raíces desempeñan la importante tarea de absorción de agua y minerales, al mismo tiempo que sirve de ancla a la planta, las decisiones de manejo deben considerar el efecto que tendrán en la profundidad de las raíces. Algunos de los factores que impactan el crecimiento y desarrollo de las raíces son:

Condiciones de Siembra - Un pobre desarrollo radicular inicial como resultado de daño por frío puede seguir causando problemas a lo largo del ciclo con una capacidad de alimentación disminuida y un potencial de rendimiento limitado.

Agua y Nutrientes - La aplicaciones controladas de agua y nutrientes estimulan un buen desarrollo y crecimiento radicular. Agua y nutrientes en exceso pueden conducir a raíces superficiales; así mismo, condiciones de falta de agua y nutrientes pueden provocar un crecimiento radicular excesivo. Ambos casos pueden impactar negativamente la productividad de las partes aéreas de la planta.

Compactación - La compactación del suelo presenta otro problema al funcionamiento y desarrollo efectivo de las raíces. Con un desarrollo radicular restringido, la frecuencia de los riegos puede impactar a los rendimientos ya que los efectos negativos de un sistema radicular poco profundo pueden ser compensados con aplicaciones frecuentes de pequeños volúmenes de agua. Para minimizar la compactación, es recomendable evitar el paso de
INICIO DEL CICLO

maquinaria en suelos mojados. El cultivo del suelo durante la temporada pueden ayudar a aliviar un poco el problema, pero no lo corrige completamente. Un barbecho profundo después de la cosecha puede ser requerido para evitar problemas en ciclos siguientes.

Oxígeno – El oxígeno en el suelo es necesario para el crecimiento radicular. Un campo con un suelo bien drenado es esencial para que el oxígeno llegue a las raíces. El drenaje impide que el suelo se sature con agua, invadiendo los espacios aéreos del suelo.

pH – El desarrollo radicular también se ve afectado por el pH del suelo. Un desarrollo radicular normal ocurre cuando los niveles de pH se encuentran entre 5.5 y ocho. Fuera de este rango, el desarrollo radicular se ve restringido.

CRECIMIENTO EQUILIBRADO

La planta de algodón procura equilibrar el crecimiento de sus partes aéreas y subterráneas. A esto se le llama relación raíz – brote. La relación raíz – brote varía según la etapa de crecimiento de la planta y es influenciada por condiciones ambientales. Para entender la relación raíz – brote, es importante saber que las raíces proveen a la planta con la humedad y nutrientes que le permiten crecer. Los brotes, o el crecimiento aéreo (el que ocurre por arriba del suelo), proveen los carbohidratos necesarios para que las raíces crezcan.

La investigación muestra que la biomasa y longitud radicular alcanza su máximo alrededor de las 1,000 UC60 o aproximadamente una semana después de iniciada la floración. El peso seco vegetativo máximo se alcanza a las 1,530 UC60. Durante esas 530 UC60 entre ambos eventos, el peso seco vegetativo y fructífero aumenta drásticamente, pero la longitud combinada de las raíces finas (las que más contribuyen a la absorción) disminuye a sólo el 47% de su valor máximo. Los crecimientos radicular y vegetativo son sumamente sensibles a la, y detenidos por, retención inicial de cápsulas, ya que aumenta la competencia por carbohidratos disponibles. Durante la floración, ya no es posible compensar los problemas que pudieron haber afectado al desarrollo radicular.

Consideración: El sistema radicular alcanza su máximo al inicio de la floración

Las condiciones de sequía dirigen el crecimiento de brotes a raíces y una baja radiación solar dirige al crecimiento de raíces a brotes. Los daños a
INICIO DEL CICLO

brotes, ya sea por factores ambientales como una granizada o mecánicos como un cultivo mal efectuado, frenan el desarrollo radicular hasta que la planta se recupere. De igual manera, el podado de las raíces frenará el crecimiento de los brotes nuevos hasta que las raíces se recuperen. La mayoría de los productores y extensionistas saben que los cultivos dañan a las raíces y retrasan el desarrollo vegetativo. Somos, sin embargo, menos conscientes que el daño a los brotes retrasa el crecimiento radicular.

Consideración: Una forma práctica para determinar si el crecimiento es normal, se puede llevar a cabo mientras se recorre el campo:

- Seleccione plantas al azar
- Tome el tallo principal entre el cuarto y quinto entrenudo a partir de la terminal. Este entrenudo es el último entrenudo que ha alcanzado su máxima longitud.
- Que se debe esperar:
 - Etapa temprana, si se pueden colocar tres dedos (2 pulgadas = 5 cm) entre estos nudos, el crecimiento es potencialmente muy rápido y debe considerarse el tomar medidas (uso de reguladores de crecimiento, controlar plagas o riegos).
 - Pasado medio ciclo (17 a 18 nudos totales), una distancia entre los nudos 4 a 5 a partir de la terminal de 3 pulgadas = 7.5 cm (cuatro dedos) indicará de nuevo un crecimiento muy vigoroso.

DESARROLLO DE NUEVAS RAMAS

Un aspecto que comúnmente preocupa a los productores es un crecimiento y desarrollo vegetativo normal. La ilustración muestra las distintas partes de la planta. Los cotiledones son las hojas que aparecen al germinar la semilla y están exactamente opuestos el uno del otro a la misma altura. Los nuevos nudos se desarrollan por arriba de los cotiledones con 3/8 de giro respecto a su posición en el tallo. Este acomodo permite un mínimo de sombreado a las hojas inferiores conforme se desarrollan nuevos nudos. Para cuando entre el cuarto y octavo nudo aparecen, se inicia el desarrollo de las ramas fructíferas.

Tanto las ramas fructíferas como las vegetativas producen una serie de nudos. Las ramas vegetativas son ramas secundarias del tallo principal y tienen una hoja asociada a cada nuevo nudo. Las ramas fructíferas se diferencian en que cada nudo termina en una hoja y una posición fructífera (un botón o cápsula unidos a la rama por un tallo corto llamado pedúnculo). Los primeros nudos de una rama vegetati-
va tienen solo hojas, pero si la rama está bien desarrollada, se pueden iniciar de ellos ramas fructíferas como en el tallo principal. Se pueden formar ramas fructíferas en ramas vegetativas bien desarrolladas. Sin embargo, estas ramas fructíferas son débiles y por lo general producen sólo una posición fructífera.

Consideración:

Las bajas poblaciones pueden provocar que la primera rama fructífera aparezca un nudo más abajo

Las altas poblaciones, temperaturas anormalmente altas o bajas y el daño de insectos pueden elevar el nudo de la primera rama fructífera hasta en tres nudos.

Una vez que la planta inicia la fructificación, la mayoría de las nuevas ramas serán fructíferas. Estas ramas se desarrollan inicialmente a un ritmo de una cada 50 U C60, o una cada dos y medio a tres días durante clima cálido. Conforme la temporada progresa y los recursos son transformados en cápsulas, pueden necesitarse de 5 a 10 días para cada nudo nuevo. Cuando aparece el “cut out” o la planta se “rinde”, el desarrollo de nuevos nudos cesa.

Consideración: Existen leves diferencias entre variedades con respecto a la producción de nuevos nudos, pero la mayoría producen nuevos nudos cada 50 U C60 durante la mayor parte de la temporada, casi lineal en apariencia. Conforme el momento en que la planta se “rinde” se aproxima, el ritmo de producción de nuevos nudos decrece drásticamente y finalmente cesa.

El monitorear el número de ramas fructíferas lo suficientemente jóvenes como para tener un botón en primera posición (nudos produciendo botones florales) es una buena medida de vigor y puede relacionarse con el rendimiento. Al aparecer el primer botón, el valor de esta medición es cero y aumenta a su máximo al inicio de floración. Un valor entre ocho y nueve a inicio de la floración indica crecimiento normal con pocas condiciones limitantes. El estrés más común es la falta de agua. Si al inicio de floración el número es menor a siete, el rendimiento puede verse limitado porque la planta se “rinda” prematuramente.
FORMACIÓN Y RETENCIÓN DE BOTONES

Después de que se hayan acumulado alrededor de 450 U.C60, la planta de algodón empieza a producir botones florales, los cuales tienen el potencial de convertirse en cápsulas. Los botones son descritos generalmente de manera subjetiva por su tamaño - cabeza de alfiler, cabeza de cerillo, chico, mediano, grande - y los agrónomos y entomólogos a menudo difieren en cuanto a cuándo un botón es lo suficientemente grande como para ser considerado un botón. Para propósitos de monitoreo de plantas, usualmente se considera como botón cuando, sin considerar las brácteas, alcanza un diámetro de 1/8 de pulgada (3 mm aproximadamente). Desde el punto de vista de manejo del cultivo, esta es una espera muy larga, ya que en esta etapa, el botón ha sido susceptible de ser abortado.

No todos los cuadro botones que aparecen en la planta llegan a ser capullos, la retención en la primera rama fructífera es menor que la de las tres o cuatro ramas por encima de ésta. Además, la retención de la primera posición en las ramas fructíferas 10 a 12 es de 25 a 60% Sin embargo, un signo de daño significativo es cuando la retención de botones en primera posición de las 5 ramas fructíferas superiores es menor a 80% antes de la segunda semana de floración. Si esto es observado, la causa debe ser investigada. Ésta por lo general estará relacionada con falta de agua o daño de insectos.

Consideración: Determine la retención en primera posición de las primeras 10 ramas fructíferas dividiendo el número de fructificaciones (botones, flores o cápsulas) por el número de sitios fructíferos. Por lo menos 20 plantas deben ser contadas para tener un tanto por ciento de retención confiable.

Antes de que finalice la segunda semana de floración, no hay todavía una presencia de cápsulas suficiente como para ocasionar un estrés fisiológico (falta de carbohidratos) capaz de afectar la retención de botones. Periodos largos de cielo nublado durante el cuadreo o inicio de floración, así como una sequía o frío severos, pueden provocar abscisiones fisiológicas de botones. Por lo general, la abscisión por causas fisiológicas no es común hasta el inicio de la floración, por lo que es importante enfocar la atención en otras causas. Si la abscisión no es provocada por temperatura, nublados o humedad, entonces la causa más probable son insectos y se deben emplear medidas correctivas.

Consideración:
\- Las chinches son la principal causa de pérdidas de botones tempranos
\- Los thrips pueden causar pérdidas de botones, generalmente esto va acompañado de hojas distorsionadas
\- Altas poblaciones de plantas con crecimiento vigoroso también pueden resultar en pérdida de botones

Se ha creado cierta preocupación sobre una mayor susceptibilidad de los algodones con la Tecnología Bollgard a las chinches. Una disminución en el uso de insecticidas para controlar al complejo bellotero puede resultar en una mayor población de chinches. Los beneficios de precocidad y rendimiento de los algodones Bollgard se pueden ver reducidos si se permite que las chinches dañen a los botones. Por lo tanto se debe seguir teniendo un programa de monitoreo de plagas y retención de botones durante toda la temporada para tener los beneficios completos del uso de esta tecnología.
Monitorio de la Planta de Algodón

El mapeo de plantas ha estado de moda en los últimos años en la industria algodonera. Gran cantidad de artículos y conferencias han aparecido para explicar por qué el mapeo es importante y que significan los distintos términos empleados en el mapeo. Para los productores de algodón, el aspecto más importante del mapeo es el de cómo puede éste ayudar a manejar el cultivo durante la temporada en curso. Para este fin, es útil llevar registros precisos y actualizados sobre el crecimiento y patrones de fructificación. También es útil usar la misma información de ciclos anteriores para verificar si es cultivo está progresando dentro de lo normal.

Los distintos componentes del mapeo de plantas se dividen de acuerdo a la etapa de crecimiento (ver capítulo sobre el tema):

Principio del Ciclo:

Población - Determinar ésta es importante ya que influye en el crecimiento y desarrollo de la planta y el manejo se debe adecuar a esta. Una población aceptable va de 75,000 a 125,000 plantas por hectárea.

Altura de Planta y Nudos Totales - Tanto la altura como el número de nudos totales son parámetros importantes para medir la etapa y el ritmo de crecimiento. Ambos factores son importantes para programar el uso de herbicidas postemergentes, en particular Faena Ultra (Roundup Ultra) en algodones con la tecnología Solución Faena (Roundup Ready). El ritmo de crecimiento es el cambio en la altura de la planta dividido por el cambio en el número de nudos totales durante un periodo de tiempo.

Retención Inicial de Frutos - La retención, especialmente la de las primeras cinco rama frutíferas debe ser monitorizada. Pérdidas excesivas (por arriba del 25%) son motivo de cuidado. Ya sean las pérdidas por causas ambientales o insectos, se deben tomar medidas correctivas inmediatas para frenar estas pérdidas y mantener otras posiciones en la planta y futuras decisiones de manejo deben considerar un posible retraso en la maduración.

Mitad del Ciclo:

Crecimiento Vegetativo - El mantener en observación el crecimiento vegetativo así como el desarrollo de fructificaciones es sumamente importante durante este periodo para evitar un excesivo crecimiento vegetativo. Existen varias herramientas ayudan a determinar si esto está ocurriendo así como las dosis de Cloruro de Mepiquat a emplear según el tamaño y etapa de desarrollo de la planta para regular su crecimiento.

Retención de Fructificaciones - La retención de frutos en primera posición de nuevo es importante para determinar cualquier pérdida que pudiera estar relacionada con insectos, fertilización o algún otro factor ambiental. Una pérdida alta de cápsulas en alguna parte en particular de la planta pudiera afectar el valor final del micronaire.

En España utilizamos la nomenclatura americana: Nodes above white flower (NAWF)

Nudos Sobre Flor Blanca (NSFB) - Los NSFB son una referencia rápida y efectiva de cuan cerca está el cultivo de “rendirse” (NSFB cinco o menor). Al inicio de la floración los NSFB deben estar alrededor de 8 a 9, más significa un crecimiento vegetativo excesivo, menos significa que el cultivo pudiera “rendirse” prematuramente. Después de la segunda semana de floración los NSFB deben reducirse aproximadamente en uno a la semana.

Final del Ciclo:

Cualquier problema de rendimiento, calidad de fibra y micronaire, a menudo puede ser explicado estudiando la información de un mapeo final y localizando zonas de pérdida de frutos en la planta que pueden relacionarse con algún evento en particular que haya ocurrido previamente durante el ciclo.

Nudos Sobre Última Cápsula Reventada (NUCR) (NACB) - Cuando la cápsula recién abierta (iniociando su apertura) de primera posición está a cuatro nudos de la última cápsula cosechable, es el momento de aplicar defoliantes.

Altura Final y Nudos Totales Finales - Esta información ayuda a indicar como creció la planta durante el ciclo y si hubo estrés durante su crecimiento y desarrollo.
M ANEJO DEL C RECIMIENTO

Existen múltiples opciones de manejo para escoger, ya sea para estimular el crecimiento de la planta o para frenarlo. Debido a que cada práctica de manejo necesita ser ajustada específicamente al ciclo, medio ambiente y variedad, es necesaria una exposición de sus componentes y las maneras en las que estos pueden ser mejor usadas.

DETERMINACIÓN DE UN CRECIMIENTO ADECUADO, EXCESIVO O RETRASADO

El uso del cloruro de mepiquat, un regulador del crecimiento de planta (RCP) comercializado con varios nombres comerciales, puede ser una valiosa herramienta para manejar el crecimiento y controlar el equilibrio entre el crecimiento vegetativo y reproductivo. El determinar cuando aplicar y cuanto aplicar de cloruro de mepiquat puede ser difícil, por lo que es importante entender como funciona el producto.

USO DE REGULADOR DE CRECIMIENTO (CLORURO DE MEPQUAT)

NOMBRE COMERCIALES Y CONCENTRACIÓN DE I.A. DE PRODUCTOS DE CLORURO DE MEPQUAT

<table>
<thead>
<tr>
<th>Nombre Comercial</th>
<th>Concentración de I.A. (cloruro de mepiquat en gr/ Lt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix®</td>
<td>42</td>
</tr>
<tr>
<td>Pix Concentrado</td>
<td>240</td>
</tr>
<tr>
<td>Mepichlor®</td>
<td>42</td>
</tr>
<tr>
<td>Mepex®</td>
<td>42</td>
</tr>
<tr>
<td>Regulex®</td>
<td>42</td>
</tr>
</tbody>
</table>
El cloruro de mepiquat tiene varios efectos en el crecimiento y desarrollo del algodón. Los más importantes son:

- Reduce la elongación de los entrenudos, lo que ocasiona plantas más bajas y libera carbohidratos para desarrollo de botones y cápsulas.

- Mejora la retención de cápsulas, aunque el grado de efecto es variable debido a los múltiples factores que la afectan.

- Incrementa las reservas de carbohidratos para retener botones.

Los efectos citados dependen principalmente de la concentración del cloruro de mepiquat en la planta. La dosis aplicada y el tamaño de la planta controlan esa concentración. Al aumentar la dosis de cloruro de mepiquat, la concentración en la planta aumenta. A esto se debe el que aplicar dosis altas a plantas pequeñas resulta en niveles inaceptables de reducción de crecimiento.

Conforme la planta de algodón crece, la cantidad de cloruro de mepiquat requerida para lograr el efecto deseado aumenta. Por esto, si a una planta muy grande se le aplican dosis normales, la concentración será insuficiente para proveer un buen control del crecimiento. Debido a esto, sobre todo con variedades vigorosas, es importante evaluar el ritmo de crecimiento del cultivo, y si este es excesivo, aplicar las dosis adecuadas de cloruro de mepiquat para controlar su crecimiento.

Enfocando el Crecimiento con Reguladores de Crecimiento

Debido a que el algodón es una planta perenne que manejamos como anual, empujamos a la planta para que se comporte como queremos. Consecuentemente, hacer que la planta se enfoque al crecimiento reproductivo, es una de las áreas más importantes en el manejo del algodón.

Tanto el crecimiento vegetativo como el reproductivo juegan papeles importantes en el rendimiento final. Y mientras a menudo consideramos el crecimiento vegetativo como negativo, debemos recordar que para sumar botones debemos sumar hojas. Debemos construir una estructura que pueda soportar una carga de cápsulas capaz de dar altos rendimientos. Nuestra tarea es manejar la altura de la planta hacia un tamaño de entrenudos deseado (por lo general un promedio de 2 pulgadas (5 cm)). Las nuevas variedades con altos rendimientos y que tienen el potencial de continuar su crecimiento vegetativo al mismo tiempo que soportan una alta carga de cápsulas, pueden llegar a necesitar buenas dosis de cloruro de mepiquat desde el inicio de la formación de botones florales.

Existen condiciones que pueden indicarnos la posibilidad de uso de reguladores:

- Algodón después de maíz u hortalizas
- Siembras tardías
- Variedades altas e indeterminadas
- Historial de crecimiento en ese campo
- Altas poblaciones
- Campos con alto N disponible
- Campos con baja retención de botones
- Campos que queramos cosechar temprano
INICIO DEL CICLO

Consideración

- Aplicaciones a dosis ligeras y tempranas, pueden ser más efectivas que aplicaciones a dosis alta mas tardías.
- Juan Landívar de D & PL sugiere concentraciones de 10 ppm de cloruro de mepiquat en la planta.

Debido a que el determinar cuando y cuanto cloruro de mepiquat debe ser aplicado, es a menudo complicado, existe un método simple - pero altamente preciso - de monitorear el crecimiento del algodón. El procedimiento consiste en determinar la longitud del último entrenudo maduro y completamente extendido, el cual se encuentra entre el cuarto y quinto nudo a partir de la terminal de la planta. El término “máxima distancia de entrenudo” (MDE) se refiere a esta medición.

Fertilización

Los productores por lo general aplican fertilizantes con nitrógeno y potasio antes de la floración. Pero debido a que durante la formación de botones florales, floración y desarrollo de cápsulas es cuando el algodón tiene su mayor demanda de nutrientes. Se recomienda una segunda aplicación de fertilizante cuando sea posible hacer aplicaciones divididas o un análisis de peciolos así lo indique. Existen diferencias entre variedades en cuanto a requerimientos de fertilizantes. Recomendamos a los productores que eviten en lo posible aplicaciones mayores a 100 kg de nitrógeno por hectárea, ya que esto pudiera conducir a un crecimiento excesivo. También se recomienda que las aplicaciones se hagan de forma dividida, ya que esto permite hacer ajustes en las dosis conforme a las necesidades de la planta y al clima.

Consideración: los resultados de análisis de niveles de nitrógeno en peciolos previos a la floración pueden ser influenciados tanto por la temperatura como por la disponibilidad de nitrógeno en el suelo y no son fiables sino hasta después del inicio de la floración.
Necesidades Tempranas de Fertilización y Efectos de Deficiencias

<table>
<thead>
<tr>
<th>Fertilizante</th>
<th>Necesidades</th>
<th>Efecto de Deficiencias</th>
</tr>
</thead>
</table>
| **Nitrogénio** | Las necesidades son máximas durante el cuadreo y floración. Se puede aplicar en pre-siembra, en banda al cultivo o foliarmente | ▶ Hojas amarillentas o verde pálido. Conforme las hojas se vejejan, se tornan café o rojizas, se secan y se caen
▶ Plantas de tamaño reducido
▶ Reducida retención de cápsulas |
| **Fósforo** | Depende del pH del suelo. Debe ser colocado en la zona radicular | ▶ Plantas de tamaño reducido
▶ Hojas pequeñas, verde oscuro
▶ Amarrar y maduración retrasadas
▶ Reducciones en rendimiento y calidad de fibra |
| **Potasio** | Las necesidades son más altas durante el llenado de las cápsulas. Son importantes los niveles en el subsuelo. Está relacionado con el pH del suelo, puede ser aplicado de manera foliar | ▶ Plantas de crecimiento reducido
▶ Las venas de las hojas se tornan rojizas, pasando la coloración a los mirmenes de las hojas
▶ Los bordes de las hojas se enroscan hacia abajo
▶ Las cápsulas son pequeñas e inmaduras, pueden no abrir
▶ Reducciones en rendimiento, resistencia de fibra y micronaire |
| **Boro** | Se puede aplicar en mezclas de fertilizantes o con herbicidas pre-emergentes | ▶ Abscisión anormal de botones y cápsulas pequeñas
▶ Oscurecimiento en la base de las cápsulas
▶ Cápsulas pequeñas y deformes que no esponjan al abrir
▶ Terminales muertas y entrenudos cortos
▶ Los peciolos muestran anillos de color verde oscuro, hojas engrosadas y difíciles de defoliar
▶ Pobre respuesta a nitrógeno y potasio |
| **Azufre** | Las aplicaciones al suelo son más efectivas que las foliares | ▶ Los síntomas aparecen primero como un amarillamiento persistente de las hojas nuevas y enrojecimiento del pecíolo
▶ En casos severos los síntomas pueden aparecer en toda la planta
▶ Un diagnóstico oportuno es vital, ya que las deficiencias una vez iniciada la floración afectan al rendimiento y aplicaciones posteriores ya no compensan estas pérdidas |
| **Calcio** | | ▶ Las deficiencias rara vez son vistas, ya que el bajo pH y toxicidad por aluminio limitan primero el crecimiento |
| **Magnesio** | Las deficiencias son más comunes en suelos arenosos | ▶ Aparece primero como una coloración púrpura o enrojecimiento de las hojas inferiores, las venas se mantienen verdes
▶ Abscisión prematura de hojas |
Iniciación del Ciclo de Irrigación

En aquellos campos en los que el riego está disponible, el manejo del agua previo a la floración involucra el proveer agua suficiente para obtener un máximo crecimiento, pero no tan frecuente como para desperdiciarla y llegar a reducir el crecimiento radicular. Es importante hacer notar que la necesidad de agua del algodón es relativamente baja entre la emergencia y el inicio de la formación de botones florales, pero aumenta drásticamente al llegar al máximo de floración.

Un estrés producido por falta de agua antes de la floración, puede reducir el crecimiento vegetativo y el número máximo de ramas con botones. Esto conduce a una carga de cápsulas antes de la formación de una superficie foliar adecuada para proveer la energía o fotosintatos requeridos para un máximo crecimiento y rendimiento.

Consideración: El retrasar el primer riego puede estimular un enraizamiento más profundo lo cual debe pesarse contra la tendencia a limitar el crecimiento aéreo y por lo tanto limitar el potencial de rendimiento. En siembras muy retrasadas o zonas con ciclos sumamente cortos, el retrasar el primer riego puede ser una alternativa para promover la precocidad del cultivo.

Manejo de Plagas

El control de plagas inicial debe incluir el control de malezas, insectos y enfermedades. El impacto que cada plaga puede tener en el desarrollo de la planta ha sido ya brevemente mencionado, sin embargo, el tratar las opciones de control por separado y los posibles efectos que estas opciones puedan tener en el desarrollo de la planta es importante.

Control de Malezas

El control de malezas al inicio del ciclo puede variar grandemente según la región, espectro de malezas, tipo de suelo, equipo y recientemente por el uso de variedades resistentes a herbicidas o nuevos productos químicos. Aún con estas nuevas tecnologías, el control mecánico sigue siendo una parte integral del control de malezas en muchos casos.
Herbicidas Aplicados Sobre el Cultivo

Si no se emplean herbicidas pre-emergentes o si hay escape de malezas, los herbicidas aplicados sobre el cultivo pueden ser necesarios. Existen varios herbicidas selectivos para el control de zacates de gran seguridad para el cultivo.

Y los campos sembrados con algodones con tecnología Solución Faena (Roundup Ready), permiten el uso de aplicaciones de Faena (Roundup) para controlar malezas de hoja angosta y hoja ancha hasta que el algodón llegue a la cuarta hoja verdadera y el cultivo esté creciendo de acuerdo a las indicaciones en la etiqueta. Si las hojas anchas son el problema y el cultivo no es Solución Faena (Roundup Ready), el herbicida Staple ha sido recientemente introducido al mercado para atender esta necesidad. DSMA y MSMA pueden ser empleados sobre el cultivo a dosis bajas, la investigación indica que aplicaciones tempranas brindan un mejor control y mayor seguridad al cultivo en comparación a aplicaciones más tardías. Tratamientos de último recurso con varios productos pueden ser usados en algodón de hasta 15 cm, pero pueden retrasar la maduración o reducir los rendimientos.

Consideración: Los aplicaciones de herbicidas post-emergentes deben ser tempranas de ser posible, ya que la eficacia se incrementa.

Control Total de Malezas

Las nuevas tecnologías han hecho posible un control total de malezas en post-emergencia, según Mike Patterson, Extensionista Control de Malezas del Sistema Cooperativo de Extensión de Alabama. Según Patterson, el Sistema Solución Faena (Roundup Ready) permite el control post-emergente. Varios puntos deben tenerse en cuenta si se quiere usar este método.

- Se requieren aplicaciones oportunas de Faena (Roundup) sobre el cultivo y dirigidas.
- Existen malezas para las cuales Faena (Roundup) es débil o no controla bien. Como resultado, un programa de solo Faena (Roundup) en extensiones grandes puede traer un cambio en el espectro de las malezas presentes, por lo que malezas que antes no eran problema, lo sean.
- Los herbicidas residuales siguen siendo efectivos y no deben descartarse como herramientas, sobre todo cuando se hagan aplicaciones dirigidas, ya que las raíces de las malezas estarán establecidas antes del contacto con Faena (Roundup). Las aplicaciones al cierre de cultivo seguirán teniendo su lugar para controlar malezas al final del ciclo.
- Habrá un cambio en el patrón de uso de herbicidas residuales en suelos arenosos donde se ha notado daño.
- La nueva tecnología debe usarse en combinación con otros medios para lograr cosechas limpias.
- El tipo de suelo y métodos de siembra influirán en el tipo de control de malezas a emplear.
- Se seguirá buscando un buen control a un menor costo, por lo que los métodos variarán de campo en campo.
APLICACIONES DIRIGIDAS POST-EMERGENTES

Las aplicaciones dirigidas post-emergentes son un importante componente en el control de malezas de hoja ancha, siendo estas utilizadas una vez que otras alternativas de control de malezas hayan dado una diferenciación de altura entre el algodón y las malezas. Existen varios herbicidas registrados para este tipo de aplicación, incluyendo al Faena (Roundup) en algodones Solución Faena (Roundup Ready). El momento de la aplicación es un componente importante del sistema de control dirigido en post-emergencia, pero también la precisión de la aplicación no debe ser pasada por alto. Debido a que el contacto con el cultivo debe reducirse al mínimo, la ubicación de las boquillas y el uso de guardas pueden ser de gran utilidad.

CONTROL DE INSECTOS

Las plagas de inicio de ciclo, como gusanos trozadores y áfidos, pueden tener un impacto negativo en el cultivo conforme este inicia su emergencia. Como se mencionó en la sección sobre retención de botones, las chinches y los thrips pueden provocar la caída de botones.

Los programas de erradicación del picudo y los algodones Bollgard, han cambiado el panorama del control de insectos. Y aunque la mayoría de estos cambios se notan después de iniciada la floración, hay ciertas plagas de inicio de ciclo que son susceptibles al Bollgard. Además, uno de los mayores beneficios de la erradicación del picudo y el Bollgard, es el prospecto de sistemas de manejo integrado de plagas bien planeados. Existe la posibilidad de cambios en el espectro y población de insectos al ser controladas una o más especies de insectos. Se deben tomar medidas de control cuando las plagas alcanzan los umbrales económicos.

Las aplicaciones de Roundup sobre el cultivo pueden realizarse hasta la etapa de la cuarta hoja verdadera
Insectos Que Dañan Al Algodon Joven

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Insecto</th>
<th>Tipo de Daño</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plántula</td>
<td>Trozadores o Chapulines</td>
<td>Tallos cortados en la base</td>
</tr>
<tr>
<td></td>
<td>Afidos o Mosca Blanca</td>
<td>Cotiledones deformes o primeras hojas verdaderas arrugadas y con mielecilla (melaza)</td>
</tr>
<tr>
<td></td>
<td>Thrips</td>
<td>Cotiledones y hojas verdaderas arrugadas</td>
</tr>
<tr>
<td></td>
<td>Gusanos Soldado y Medidor</td>
<td>Hoyos desgarrados en las hojas</td>
</tr>
<tr>
<td>Emergencia y Etapa de Formación de Botones Florales</td>
<td>Araña Roja</td>
<td>Hojas con apariencia moteada o enrojecida, telarañas en el envés de la hoja</td>
</tr>
<tr>
<td></td>
<td>Perforador de la Hoja</td>
<td>Hojas con agujeros como por granizo, larvas en forma de herradura presentes</td>
</tr>
<tr>
<td></td>
<td>Gusano Soldado</td>
<td>La superficie de las hojas mordidas, quedando solo las venas “esqueletizadas”, con numerosas larvas pequeñas presentes</td>
</tr>
<tr>
<td></td>
<td>Chinche Lygus, Chicharritas</td>
<td>Botones secos, ennegrecidos</td>
</tr>
<tr>
<td></td>
<td>Complejo Bellotero</td>
<td>Botones florales huecos con orificios de entrada redondos</td>
</tr>
<tr>
<td></td>
<td>Gusano Cogollero</td>
<td>Brácteas mordisqueadas</td>
</tr>
<tr>
<td></td>
<td>Picudo</td>
<td>Pequeños orificios de alimentación en los cuadros con excrementos amarillos o anaranjados, pequeñas marcas con apariencia de verrugas en los sitios de ovipostura</td>
</tr>
</tbody>
</table>
MONITOREO DEL Crecimiento

Esta sección relaciona las mediciones de monitoreo de la planta y observaciones que brindan pistas para un manejo adecuado de insumos. El ponderar alguno o todos ellos ayuda a decidir si es necesario el modificar el uso de alguno de los insumos. Existen varias mediciones que son útiles para verificar que el crecimiento y desarrollo estén ocurriendo de una manera normal y una combinación de estas mediciones se recomienda cuando sea posible. Durante la floración, productores y extensionistas deben de seguir registrando la altura y el número de nudos en el tallo principal, así como iniciar conteos de Nudos Sobre Flor Blanca (NSFB) semanalmente. También se recomienda determinar el porcentaje de retención de botones y la distancia máxima entre nudos.

ALTURA DE PLANTA

La altura del tallo principal es una de las mediciones más comunes hechas a la planta de algodón y puede ser útil para toma de decisiones de manejo usada en combinación con otra información. Por lo general, la planta de algodón llega a su máximo ritmo de crecimiento al inicio de la floración o poco después. Un crecimiento diario de alrededor de 2.5 cm es lo máximo aceptable. Un crecimiento más rápido indica que se necesita intervenir con manejo y que el uso de reguladores de crecimiento pudiera ser beneficioso.
Etapa Intermedia del Cultivo

Número de Nudos

El desarrollo de nuevos nudos también se acerca al máximo cerca del inicio de la floración. Debe de haber un nuevo nudo cada 2.5 a 3 días - aproximadamente cada 40 a 50 UC60. Es difícil alterar el ritmo de formación de nuevos nudos, ya que los principales factores que lo afectan son bajas temperaturas y faltas extremas de agua o carbohidratos. De mayor importancia que el número de nudos que exista en una fecha determinada, es si el número de días o de UC60 entre cada nuevo nudo está aumentando. Si esto no ocurre, o el desarrollo vegetativo no se vuelve más lento a la tercera o cuarta semana de iniciada la floración, hay que investigar las causas.

Nudos con Botones en Formación o Nudos Sobre Flor Blanca (NSFB)

El máximo número de ramas fructíferas antes de la floración, o el número máximo de NSFB, son excelentes indicadores de vigor. Los NSFB son útiles porque corresponden directamente con la absorción de energía de las demandas reproductivas y vegetativas de la planta. Nos permiten monitorear la diferencia entre el ritmo al que los botones se convierten en flores y el ritmo al que se estén produciendo nueva vegetación y nuevos nudos. El ritmo de formación de nuevos botones depende en gran parte de la temperatura, ya que los cuadros botones tienen prioridad sobre la energía disponible en la planta, pero la formación de nuevos nudos y follaje dependen de la temperatura y de que la disponibilidad de carbohidratos exceda a las necesidades reproductivas.

El que el número de NSFB disminuya, significa que se están produciendo nuevos nudos más lentamente que lo que los cuadros de primera posición tardan en convertirse en flores. Este número varia entre 5 y 10 NSFB, siendo lo más común entre 8 y 10 nudos cuando no hay condiciones limitantes. Valores de NSFB de 7 o menos al inicio de la floración, indican un bajo vigor y el uso de reguladores de crecimiento no es aconsejable. Si el valor está más cercano a 10 y/o no disminuye a un ritmo de un nudo por semana, el vigor es muy alto y el uso de cloruro de mepiquat puede ser beneficioso. Un número de NSFB de 5 indica que la planta está llegando al fin de su periodo de floración efectiva (se está rindiendo).

Retención en los Cinco Nudos Fructíferos Inferiores

Las cinco posiciones inferiores en plantas de ciclo corto y de la 3ª a la 8ª rama fructífera en plantas de ciclo largo son las principales contribuyentes al rendimiento y son también las más importantes para frenar el crecimiento vegetativo. Es necesario determinar la retención en esas posiciones al inicio de floración para determinar la necesidad del uso de reguladores de crecimiento. Si la retención en las cinco ramas fructíferas inferiores es menor a 60%, el uso de cloruro de mepiquat pudiera ser beneficioso, aún cuando la medición de la altura no lo sugiera. Por el contrario, si la retención en esas posiciones está cercana al 100% el crecimiento casi seguramente estará controlado por la carga de cápsulas.
ETAPA INTERMEDIA DEL CULTIVO

RETENCIÓN EN LAS CINCO RAMAS FRUCTÍFERAS SUPERIORES

Esta retención se refiere a la de los botones en primera posición en las últimas cinco ramas fructíferas de la planta. Existen pocas razones fisiológicas para que se caigan los botones al inicio de la floración, en especial de la parte superior de la planta. Una pérdida elevada (mayor del 20%) necesita ser atendida. Una pérdida sostenida por arriba del 20% puede generar una carga de cápsulas que no será suficiente para controlar el crecimiento de la planta. Conforme avanza la floración, la competencia por carbohidratos entre cápsulas causará que algunos botones sean abortados (abscisión fisiológica). Entre la cuarta y quinta semana de floración es normal que ocurra.

DISTANCIA MÁXIMA ENTRE NUDOS

Como se mencionó anteriormente, la máxima distancia entre nudos (MDEN - la distancia entre el cuarto y quinto entrenudo a partir de la terminal), es la medición más sensible y actualizada para determinar el vigor de la planta. Engloba a todos los efectos que el manejo pudiera estar teniendo en el crecimiento. También refleja la relación entre la oferta y la demanda de carbohidratos. Después del inicio de floración, si la MDEN es mayor a 7.5 cm, el crecimiento es muy vigoroso y necesita controlarse. Si es menor a 5 cm, el crecimiento es limitado y la causa debe ser encontrada.

MANEJO PARA CALIDAD DE FIBRA

Conforme la cápsula inicia su crecimiento, las células en la superficie exterior de la semilla que darán origen a las fibras, inician su elongación. Estas células seguirán alargándose durante tres semanas, habiendo iniciado este proceso el día de la floración. El estrés durante este periodo reducirá la longitud final de la fibra. En las siguientes tres semanas (22 a 42 días después de la floración), una capa de celulosa es (sigue siguiente página) depositada diaria-
ETAPA INTERMEDIA DEL CULTIVO

El valor del micronaire por lo general se relaciona con la posición del capullo en la planta.

FACTORES QUE AFECTAN EL MICRONAIRE

<table>
<thead>
<tr>
<th>CAUSAS DE MICRO ALTO</th>
<th>CAUSAS DE MICRO Bajo</th>
</tr>
</thead>
<tbody>
<tr>
<td>▸ BUENA RETENCIÓN INICIAL SEGUIDA DE UNA POBRE RETENCIÓN EN LAS PARTES MEDIA Y SUPERIOR DE LA PLANTA</td>
<td>▸ CICLO ACORTADO DEBIDO A MAL CLIMA Y/Ó BAJAS TEMPERATURAS</td>
</tr>
<tr>
<td>▸ PREPONDERANCIA DE CÁPSULAS EN PRIMERA POSICIÓN EN DETERMINO DE LAS DE SEGUNDAS Y TERCERAS POSICIONES</td>
<td>▸ APLICACIÓN PREMATURA DE DEFOLIANTES CON LO QUE SE INTERRUMPE EL DESARROLLO DE LA FIBRA</td>
</tr>
<tr>
<td>▸ CLIMA CALIENTE ENTRE LAS TERCERAS Y SEXTAS SEMANAS DE FLORACIÓN EN CONJUNTO CON UNA POBRE RETENCIÓN EN ESTE PERIODO</td>
<td>▸ CLIMA FRÍO O NUBLADO ENTRE LAS TERCERAS Y SEXTAS SEMANAS DESPUÉS DEL INICIO DE LA FLORACIÓN CON UNA BUENA RETENCIÓN TARDÍA</td>
</tr>
<tr>
<td>▸ FIBRA CORTA POR DEFICIENCIA DE HUMEDAD EN LAS TRES SEMANAS POSTERIORES AL INICIO DE LA FLORACIÓN SEGUIDAS DE BUENAS CONDICIONES EN LAS SIGUIENTES TRES SEMANAS</td>
<td>▸ ALTOS NIVELES DE PUDRICIÓN DE CÁPSULAS, AFECTANDO LAS CÁPSULAS MÁS MADURAS DE PRIMERA POSICIÓN</td>
</tr>
</tbody>
</table>

MANEJO BASADO EN MEDICIONES

El monitorear, entender e interpretar el crecimiento provee de “pistas” para escoger las medidas de manejo apropiadas. Los productores y extensionistas necesitan ponderar cada una de estas pistas para determinar las acciones a tomar. La siguiente tabla resume estas mediciones y provee ideas de posibles manejos de insumos.
ETAPA INTERMEDIA DEL CULTIVO

PARAMETROS DE CRECIMIENTO DEL ALGODON AL INICIO DE LA FLORACIÓN Y SU INFLUENCIA EN LA TOMA DE DECISIONES DE MANEJO PARA LIMITAR SU CRECIMIENTO

USO DE REGULADORES DE CRECIMIENTO

Como se mostró en el Capítulo 2, la eficacia del Cloruro de Mepiquat depende de un gran número de factores. Durante las primeras semanas de floración, la respuesta al uso de reguladores de crecimiento puede ser máxima. Si las aplicaciones se retrasan, el control de crecimiento se ve disminuido y de la misma manera una respuesta en el rendimiento es poco probable. El Cloruro de Mepiquat puede ser utilizado durante toda la temporada (siguiendo las indicaciones en la etiqueta) para controlar el crecimiento vegetativo excesivo y enfocar al desarrollo hacia la retención de botones y cápsulas.

Si la carga de la parte inferior de la planta se ha perdido al inicio o a media temporada, es importante favorecer el desarrollo reproductivo sobre el vegetativo. Esto también es cierto en el caso de fechas de siembra tardías que se quieren madurar dentro de un tiempo propicio. Bajo estas condiciones, se requiere que la planta siga produciendo altos niveles de energía, pero que esa energía la utilice en producir una cosecha.

Consideración: la eficiencia en el uso del Cloruro de Mepiquat disminuye y las dosis aumentan conforme la biomasa o materia vegetal aumenta. Por este motivo, es importante aplicarlo en base a los indicadores en vez de esperar.
Fertilización Nitrogenada Post-Inicio De Floración

Por lo general se acepta que un buen plan de fertilización nitrogenada en algodón contempla el proveer de 20 al 30% del total antes de la floración, 60 a 75% del restante durante el desarrollo de las cápsulas y suplementar con aplicaciones foliares según la carga o necesidades que muestre el cultivo. En la práctica, este objetivo ideal es deseable pero difícil de lograr.

El mundo ideal raramente se aparece en el cultivo del algodón. Debido a que el algodón utiliza menos del 33% de las necesidades de nitrógeno antes del inicio de la floración, el aplicar todo el nitrógeno en pre-siembra no es una decisión acertada. Una sola aplicación en pre-siembra está sujeta a perder el nitrógeno disponible ya sea por desnitrificación o lixiviación, principalmente en condiciones de alta precipitación o de riego.

Si se tiene una elevada retención de cápsulas, pudiera no haber suficiente Nitrógeno disponible para soportar toda la carga. En condiciones de temporal o lluvias intensas, será importante monitorear aquellos campos que hayan recibido todo el nitrógeno en presiembra y que también hayan recibido gran cantidad de lluvia. Esto es más crítico en campos con suelos ligeros. Estos factores combinados hacen que el análisis de peciolos sea la herramienta apropiada para tomar decisiones de fertilización entre la mitad y el final de la temporada.

Puntos a considerar:

- El muestreo de peciolos deberá de iniciarse por lo menos una semana después del inicio de floración y continuar de manera semanal hasta que abra la primera cápsula.
- Lo mejor es tomar de 25 a 35 muestras de un área representativa del campo.
- Las muestras de peciolos deben tomarse de la primera hoja del tallo principal a partir de la terminal totalmente desarrollada. Esta es por lo general la cuarta hoja desde la terminal. Se debe separar la hoja del peciolo y llevar solo estos al laboratorio en donde se vaya a realizar el análisis.

En caso de que el análisis indique la necesidad de una aplicación foliar, se recomienda:

- La urea es el material más común para aplicaciones foliares de Nitrógeno, ya que es relativamente barato y de fácil absorción por la hoja con un bajo potencial para dañarla.
- El ritmo de absorción de la hoja depende de la cantidad de urea aplicada, temperatura y las condiciones de la superficie de la hoja. La absorción se ve favorecida por una planta sana y en crecimiento en combinación con altas temperaturas.
- Se ha determinado que aproximadamente 30% de la urea es absorbida durante la primera hora y 70% dentro de las primeras 24 horas. Es importante usar urea de grado “forrajero” o de bajo biuret así como evitar aplicaciones en plantas estresadas.
- Las dosis a usar típicamente oscilan de 4.5 a 7 kg de urea en 40 a 60 litros de agua. Puede ser necesario bufferizar la solución si el pH es mayor a 7. La aplicación hay que realizarla dentro de las primeras 2 a 3 horas después de haber hecho la mezcla para evitar toxicidad por amoniacal. Lo mejor es hacer las aplicación temprano en la mañana o ya bien entrada la tarde.

Consideración: las aplicaciones foliares deben realizarse cuando se haya encontrado deficiencia pero antes de que la fotosíntesis y retención se hayan visto afectadas. El monitoreo de la carga de cápsulas y el análisis de peciolos ayudan a determinar la necesidad de complementar la fertilización nitrogenada.
Fertilización

Durante la floración, se pueden obtener estimaciones razonablemente precisas del estado nutricional de la planta mediante el análisis de peciolos. Existe un número limitado de condiciones que pueden hacer que resulte complicada la interpretación de los resultados del análisis, pero si las condiciones de humedad han estado dentro de lo normal durante las dos o tres semanas anteriores, los resultados deberán ser precisos. (ver el capítulo 2 para información sobre necesidades de fertilización)

NITRÓGENO

El Nitrógeno tiene una alta demanda durante este periodo y se necesita de una disponibilidad adecuada en el suelo y la planta para obtener altos rendimientos. Las variedades vigorosas tienen la habilidad de mantener el crecimiento vegetativo durante más tiempo, por lo tanto requieren de un cuidadoso manejo de la fertilización nitrogenada. La tabla de abajo muestra los niveles adecuados de nitrógeno expresado como nitratos en peciolos.

Consideración: el dividir las aplicaciones de nitrógeno a lo largo del ciclo puede ayudar a mantener su disponibilidad durante la floración

POTASIO

El potasio también se requiere en grandes cantidades a partir del inicio de la floración, incluso la demanda de potasio puede ser mayor que la de Nitrógeno en este tiempo. La muestras de peciolos empleadas para monitorear los niveles de Nitrógeno pueden servir como base para diseñar un programa de fertilización de potasio.

Debido a que el potasio es crítico para la formación de cápsulas, los factores que afectan la retención de cápsulas también impactan en los niveles de potasio en los peciolos.

Niveles de Nitratos en Pecíolo Contra Días de Iniciada la Floración
Se puede bromear diciendo que la deficiencia de potasio se puede controlar reduciendo la carga de cápsulas, pero hay algo de verdad en esa afirmación. Si los niveles de potasio en el pecíolo se mantienen elevados, sobre todo cuando se trate de un suelo marginal en cuanto a contenido de potasio, entonces podemos preocuparnos sobre el número de cápsulas retenidas.

Consideración: si existe pérdida de cápsulas ya avanzado el ciclo, habrá que efectuar un análisis de pecíolos para verificar si se trata de deficiencia de Potasio o de algún otro nutriente.

Irrigación

El enfoque del manejo del agua durante la floración cambia de proveer humedad para tener un rápido crecimiento vegetativo a mantener el crecimiento reproductivo. Se puede controlar el crecimiento alargando un poco los intervalos entre riegos para crear un leve estrés. Es posible también, dado que el uso de agua por la planta alcanza el máximo en esta época, que manteniendo sin cambio los intervalos entre riegos, el estrés se dé de manera natural.

Consideración: riegos en exceso pueden retrasar la maduración del cultivo, por lo que los riegos y el uso de reguladores de crecimiento deben ser enfocados hacia la maduración del cultivo.

El método de presupuesto de agua es una manera bastante precisa para hacer estimaciones de intervalos de riego. Algunas de los valores necesarios para hacer el cálculo varían según los tipos de suelo. Un laboratorio de riegos puede determinar la capacidad de retención de agua del suelo, profundidad del sistema radicular, agotamiento permisible de agua entre riegos así como el uso diario de agua de la planta de algodón.
Esta información se utiliza de la siguiente manera para estimar intervalos entre riegos:

\[
\text{intervalo de riego} = \frac{\text{capacidad de retención} \times \text{profundidad de raíces} \times \text{agotamiento permisible}}{\text{cantidad de agua utilizada} + \text{uso diario}}
\]

\[
= \frac{13.3 \text{ cm por metro de suelo} \times 0.91 \text{ m}}{12.1 \text{ cm disponibles} \times 0.60 (60\% \text{ agua gastada}) + 0.762 \text{ cm usados al día}}
\]

= 9.5 (9 a 10 días entre riegos)

En campos en los que el crecimiento puede ser estimulado por exceso de lluvias o riegos, el uso adecuado de cloruro de mepiquat y una cuidadosa fertilización nitrogenada son de la mayor importancia. Consultar esas secciones en este libro.

Manteniendo la Viabilidad y Valor de la Tecnología

El impacto que el algodón con Tecnología Bollgard está teniendo en el control de insectos es real para Blake Layton, entomólogo del Servicio de Extensión de la Universidad Estatal de Mississippi. Layton dice que la Tecnología Bollgard ha cambiado el manejo de plagas en el algodón. También hace la anotación de que puede ser difícil efectuar comparaciones económicas acertadas entre variedades con Tecnología Bollbard y variedades convencionales debido al impacto que la Tecnología Bollgard tiene a nivel regional sobre las poblaciones de H. virescens. Teniendo esto en mente, habla de la necesidad de manejar la Tecnología Bollgard de tal manera que se mantenga su viabilidad en el largo plazo.

Layton dice que sin un manejo de resistencia, los insectos pudieran desarrollar resistencia a la Tecnología Bollgard en unos cuantos años. El éxito del manejo de resistencia depende del uso de refugios en las zonas en que se esté sembrando esta tecnología. Comenta que hay algunos puntos relevantes sobre manejo de resistencia en los contratos de uso de tecnología que firman los agricultores:

- Los refugios proveen una fuente de palomillas susceptibles para aparearse con palomillas que pudieran llegar a sobrevivir en algodón Bollgard.
- Para que el plan funcione debe de haber una mayor cantidad de palomillas sobrevivientes en los refugios que en los algodones Bollgard.
- Las áreas de refugio deben estar próximas a campos con algodón Bollgard para aumentar la probabilidad de apareamiento entre palomillas provenientes de ambas zonas.
- Para favorecer aún más la migración de palomillas, aquellos campos excesivamente grandes sembrados con algodón Bollgard debieran tener intercaladas franjas sembradas con algodón convencional. La separación entre los distintos tipos de algodón debe estar claramente marcada para poder muestrearlas y tratarlas con insecticidas adecuadamente.

Por último, Layton recomienda que los productores estén bien familiarizados con las distintas opciones de refugios establecidos en los contratos de licencia, de tal manera que implementen aquella que mejor se adapte a su operación. Las dos opciones están basadas en distintas proporciones de superficies y uso de insecticidas. Las opciones son:

- **80/20**: Sembrar por lo menos el 20% con variedades convencionales. En el refugio se puede llevar un control de plagas normal a excepción del uso de insecticidas a base de Bacillus thuringiensis.
- **96/4**: En esta opción es posible sembrar hasta un 96% de la superficie total con variedades Bollgard, en el 4% restante no se deben controlar las larvas del complejo bellotero ni de gusano rosado.
ETAPA INTERMEDIA DEL CULTIVO

INSECTOS

El control de plagas siempre ha sido una prioridad para los productores de algodón. Los umbrales económicos entraron a escena hace relativamente poco tiempo, para asegurar que el control químico resultara rentable. Mientras que el uso de umbrales económicos y nuevas clases de productos químicos cambiaron el panorama de la producción de algodón. En los Estados Unidos, otros dos eventos, el Programa de Erradicación del Picudo y el uso de variedades transgénicas, influyeron en toda la industria algodonera. Aunque estos eventos están enfocados a plagas específicas, su influencia se siente en todo el complejo de insectos del algodón.

La erradicación del Picudo ha permitido a algunos productores el regresar a la producción de algodón, gracias a la disminución de costos y riesgos. El uso de variedades con la Tecnología Bollgard ofrece a los productores protección contra el complejo bellotero y el gusano rosado. Estas son plagas de importancia y en algunos casos ya no era posible controlarlas de manera efectiva y su amenaza ha sido disminuida. Sin embargo, la reducción o eliminación de esta amenaza no ha ocurrido en el vacío. Algunos de los efectos han sido de naturaleza positiva, como es el hecho de que muchos entomólogos reportan un efecto de desbordamiento de control de gusanos belloteros hacia campos sembrados con variedades convencionales. Por el otro lado, se considera que otras plagas ocuparán los lugares dejados por las plagas controladas y los patrones de aplicaciones cambiarán. El manejo de plagas en algodones Bollgard difiere en algunos aspectos del de algodones convencionales, principalmente en lo que respecta al monitoreo y control del complejo bellotero y el gusano rosado.

Consideración: aquellos insectos que no son controlados por la Tecnología Bollgard, deberán ser monitoreados más cuidadosamente, ya que el control que se pudiera haber tenido de manera incidental al hacer aplicaciones contra gusanos se habrá perdido.

MONITOREO EN ALGODONES BOLLGARD

Debido a que la Tecnología Bollgard tiene distintos niveles de eficacia contra distintas plagas, un buen muestreo y una adecuada identificación son vitales. Los entomólogos del servicio de extensión agrícola de la Universidad de Auburn, Barry Freeman y Ron Smith, hicieron una revisión de las técnicas de muestreo y desarrollaron una lista de sugerencias:

Determinar larvas problemáticas - El número de huevecillos y de larvas recién eclosionadas son indicativos de presión, pero no necesariamente indican que se requiera tomar medidas de control. Debido a que las larvas susceptibles a Bollgard deben de alimentarse por un tiempo para así ingerir la toxina, es más importante el monitorear larvas pequeñas que el nivel de ovipostura. La identificación de larvas que hayan escapado al efecto del Bollgard es más difícil, pero la mayoría de los expertos coinciden en que una larva de unos 6 mm de largo y con apariencia sana tiene buenas probabilidades de sobrevivir.

Revisar la planta entera - Se recomienda inspeccionar la terminal así como la planta en la zona alrededor de la flor blanca al estar muestreando para complejo bellotero en algodones
ETAPA INTERMEDIA DEL CULTIVO

Bollgard. La zona cerca de las flores es importante ya que es en las flores blancas o ya moradas que se quedan adheridas a la bellota en donde las larvas podrían haber sobrevivido. Esto permite a los entomólogos examinar todas las flores blancas y moradas así como cápsulas asociadas. Además de esta zona, todas las cápsulas por debajo de ella deberán ser inspeccionadas visualmente para buscar brácteas que indiquen presencia de gusano soldado (Spodoptera).

Complejo Bellotero y Gusano Rosado

El complejo bellotero es el principal objetivo de la Tecnología Bollgard. Las poblaciones de larvas pueden estar presentes desde el inicio de la floración hasta el final de la temporada, siendo las generaciones más fuertes las que aparecen durante la época de llenado de las cápsulas. En un principio la Tecnología Bollgard fue juzgada solo por su eficacia durante este periodo, considerando a estas variedades como una herramienta de manejo de riesgos.

<table>
<thead>
<tr>
<th>INSECTO</th>
<th>EFECTO DEL BOLLGARD</th>
<th>DAÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliotis virescens</td>
<td>Control</td>
<td>Horadaciones la base de la flor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoyos circulares en cápsulas con excremento visible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terminales barrenadas</td>
</tr>
<tr>
<td>Gusano Rosado Pectinophora gossypiella</td>
<td>Control</td>
<td>Flores rosetadas o farolillos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoyos a través de cápsulas, carpelos y semillas</td>
</tr>
<tr>
<td>Helicoverpa zea</td>
<td>Puede requerir control químico en algunos casos</td>
<td>Horadaciones en la base de la flor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoyos circulares en cápsulas con excremento visible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terminales barrenadas</td>
</tr>
<tr>
<td>Gusano soldado (Spodoptera exigua)</td>
<td>Supresión</td>
<td>Horadaciones en la base de la flor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoyos circulares en cápsulas con excremento visible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hojas esqueletonizadas</td>
</tr>
<tr>
<td>Gusano cogollero (Spodoptera frugiperda)</td>
<td>Baja acción</td>
<td>Horadaciones en la base de la flor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoyos circulares en cápsulas con excremento visible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terminales barrenadas</td>
</tr>
<tr>
<td>Chinches Lygus y Apestosas Picudo</td>
<td>Ninguno, se reduce el control incidental</td>
<td>Flores deformes, torcidas y de aspecto áspero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pequeñas depresiones en las cápsulas</td>
</tr>
<tr>
<td>Anthonomus grandis</td>
<td>Ninguno, se reduce el control incidental</td>
<td>Area oscura y suave en la cápsula, con una larva ápoda de color cremoso adentro</td>
</tr>
</tbody>
</table>

Fuentes: G.T. Bohmfalk, Servicio de Extensión Agrícola de Taxas; Blake Layton, Servicio de Extensión Cooperativa del estado de Mississippi
ETAPA INTERMEDIA DEL CULTIVO

Sin embargo, años en que la presión del complejo bellotero ha sido baja indican que la protección de Bollgard provee de beneficios económicos aún en situaciones en las que las poblaciones no rebasan el umbral económico.

La Tecnología Bollgard provee un control excepcional en Heliothis virescens y gusano rosado, y a la fecha nadie ha reportado daño en algodón Bollgard debido a estas dos plagas. Por el otro lado, larvas de Helicoverpa zea pueden sobrevivir bajo ciertas condiciones y causar daño económico en Algodones Bollgard. Por este motivo una oportuna identificación es esencial y la necesidad de aplicaciones deberá ser considerada cuando la principal plaga presente sea H. zea.

Al muestrear un algodón Bollgard con H. zea, mantenga en mente lo siguiente:

- Para que haya larvas, debe haber palomillas, ¿ qué dice el trampeo ?
- A diferencia de H. virescens, H. zea tiene muchos huéspedes. ¿ Que cultivos hay en los campos vecinos ? y ¿ en qué estado de desarrollo se encuentran ?
- Lo más probable es que los huevecillos en la terminal no sobrevivan, pero indican la presencia de palomillas. Si los conteos de huevecillos son altos, una inspección más detenida es necesaria.
- Las larvas de primer estadio sobreviven principalmente - y probablemente exclusivamente - alimentándose de polen. Se recomienda inspeccionar flores (blancas y moradas) para verificar la presencia de larvas.
- Un número elevado de flores moradas que se quedaron adheridas a la bellota parece haber estado relacionado con daño en algodón Bollgard causado por H. zea, ¿ existe esta situación ?
- La sobrevivencia de larvas de H. zea en algodón Bollgard ocurre principalmente en la parte inferior de la cubierta vegetal. Hay que asegurarse de inspeccionar toda la planta y no solo la terminal.

OTROS INSECTOS PLAGA DEL ALGODÓN

El algodón con Tecnología Bollgard tiene distintos grados de eficacia contra plagas distintas a las mencionadas arriba. Para plagas no controladas por la Tecnología Bollgard, utilice las recomendaciones de control locales.
ETAPA INTERMEDIA DEL CULTIVO

Las chinches y el picudo pueden causar una severa pérdida de rendimiento durante el inicio de la floración. Por lo tanto, es crítico que sean monitoreados y controlados oportunamente en caso necesario. Además de lo muestreos normales, el determinar el porcentaje de retención en las cinco ramas fructíferas superiores puede ser una herramienta útil en el control de chinches.

En regiones en donde no se ha llevado a cabo la erradicación del picudo, esta plaga sigue siendo un factor clave en todos los programas de control. Un programa que abarque toda la temporada es importante ya que las prácticas culturales de post-cosecha y las aplicaciones de insecticidas en la etapa de aparición de botones en zonas de alta incidencia pueden tener efectos de amplio alcance. Las inspecciones se deben intensificar durante la floración, ya que las poblaciones y por ende, el daño, se pueden incrementar dramáticamente durante esta etapa.

Pudrición de Cápsulas

La principal preocupación en cuanto a enfermedades conforme la temporada avanza, es un grupo de enfermedades generalmente conocido como pudrición de cápsulas. La pudrición de cápsulas generalmente se convierte en un problema en condiciones de humedad excesiva (ya sea por lluvia o ambiental) en conjunto con un excesivo daño de insectos, poblaciones altas y crecimiento excesivo (la planta se “fue en vicio”).

Consideración: los tratamientos una vez que la pudrición de cápsulas se ha establecido son ineficaces, por lo que se deben tomar medidas que reduzcan la humedad de la cubierta vegetal, como los son evitar que la planta se vaya en vicio así como riegos tardíos. Una defoliación oportuna también es de utilidad.

La publicación Cotton Physiology Today ofrece un repaso de los principales microorganismos que causan la pudrición de cápsulas.

Fusarium spp. Existen varias especies de Fusarium; los síntomas iniciales aparecen en las brácteas que rodean a las cápsulas de 35 días de edad o mayores. La infección después se disemina por las brácteas hacia la base de la cápsula, continuando por el pedúnculo hacia el interior de la cápsula. La coloración en el interior de la cápsula es negro-azulosa o café y rosasalmón a blanca en la superficie externa.

Diplodia spp. Este hongo también afecta a la brácteas. Si se le da la humedad necesaria, el hongo puede entrar a la bellota a través del pedúnculo, carpelos o las suturas entre los carpelos. Una rápida diseminación es posible, produciendo un colchoncillo negro formado de filamentos y esporas, que tornan a la bellota de color negro.

Glomerella gossypii. Este hongo produce pequeñas manchas identadas de color café-rojizo en la
superficie de la cápsulas. Conforme la enfermedad avanza, las manchas se agrandan y se tornan negras, con esporas de color que va de gris sucio a rosa brillante. La descomposición puede alcanzar hasta la mitad de la cápsula, mostrando la cápsula abierta fibra de color negro.

Xanthomonas spp. El mismo microorganismo que causa el Tizón Bacterial y la Mancha Angular de la Hoja, puede provocar la pudrición de cápsulas. Los síntomas incluyen zonas redondas, brillantes de color verde oscuro en la superficie de la cápsula. Los orificios naturales, como estomas, nectarios e incluso perforaciones hechas por insectos al alimentarse de la planta, pueden servir como vía de entrada para esta bacteria. La enfermedad causa que los gajos de los capullos se endurezcan y no se esponjen, y la fibra puede tener manchas amarillas. Las medidas de control de calidad que se llevan a cabo durante la producción de semilla pueden prevenir su diseminación al siguiente ciclo.

Rhizoctonia spp. Aunque es más común como una enfermedad de plántulas, este hongo puede causar pudrición de cápsulas que estén en las ramas inferiores. Una alta humedad relativa aumenta el alcance del hongo ya que puede llegar al tallo a través de sus filamentos. Los síntomas en la cápsula incluyen una alfombra blanca opaca de micelio y se parece a Fusarium pero sin las esporas.

Alternaria spp. Este hongo causa manchas en las hojas del algodón, pudiendo llegar a las cápsulas dándoles una apariencia opaca de color café-rojiza. Las cápsulas en la parte inferior de la plantas son más susceptibles a Alternaria. Una alta humedad relativa constante puede provocar que cápsulas completas sean infectadas y destruídas, mientras que condiciones secas provocan que las cápsulas infectadas al abrir tengas gajos endurecidos que no esponjen. En Sinaloa, México, esta enfermedad llega a defoliar completamente a las plantas afectadas. Este hongo sobrevive en el suelo en materia en descomposición dentro y alrededor de los campos.
Durante esta época del año, las prácticas de manejo consisten en mantener condiciones favorables para la maduración de las cápsulas, pero al mismo tiempo debe prepararse la planta para la defoliación y evitar el rebrote vegetativo.

Determinación y Utilidad del “Cut-Out”

El “cut-out” (cualdo la planta se “rinde” o finaliza la floración efectiva), rara vez es un evento bien definido, siendo más bien un cambio gradual a lo largo de unas dos semanas durante el cual el crecimiento vegetativo cesa. Este es un periodo en el cual las flores que se hayan en la planta tienen pocas probabilidades de llegar a ser botones que se cosechen. Y aunque no existe un momento exacto en el cual la planta se rinde, el conocer el momento aproximado en que sucede puede ser de utilidad en el manejo del cultivo.

La mejor manera de estimar cuando se rinde la planta es monitorear el número de nudos por arriba de la flor de primera posición más alta en la planta (NSFB). Cuando este valor baja a cuatro o cinco, la planta ya se “rindió”. La ilustración de la siguiente página, muestra la relación típica entre NSFB y semanas a partir del inicio de la floración.
Los NSFB disminuyen a razón de un nudo por semana por cada semana a partir del inicio de la floración. Sin embargo, el ritmo de disminución se puede ver afectado por el uso de cloruro de mepiquat, estado de humedad u otros factores. Si existió algún estrés antes de la floración los NSFB pudieran ser 7, pero si llueve o se aplica un riego, los NSFB se pueden mantener alrededor de 7 por varias semanas. Por lo común de cuatro a cinco semanas de floración efectiva se necesitan para obtener altos rendimientos.

Así como el conocer los NSFB son útiles para determinar cuando se rinde la planta, el monitorear el ritmo de disminución de los NSFB es útil para tomar decisiones de manejo del cultivo. Aquellos campos que aún estén creciendo muy vigorosamente a estas alturas del ciclo tenderán a “irse en vicio” y no seguirán el patrón normal de disminución de NSFB. Esto significa que el crecimiento vegetativo no está siendo reducido por la carga de cápsulas en desarrollo y se deben investigar las causas y posibles alternativas de manejo.

Consideración: el programa COTMAN de la Universidad de Arkansas indica que NSFB = 5, más 350 UC 60, es el momento para finalizar las aplicaciones de insectidas.

MANEJO DEL CRECIMIENTO A FINAL DEL CICLO

A esta altura de la temporada, las opciones de manejo del crecimiento son limitadas. La fertilización o uso de reguladores de crecimiento ya no son efectivos. Sin embargo, en zonas de riego, el estrés por falta de agua puede ser utilizado al final del ciclo para evitar el rebrote y acelerar la...
INTERPRETACION Y USO DE RESULTADOS DE PRUEBAS DE VARIEDADES

Conforme el número de variedades disponibles para los productores aumenta, los productores tienen más y más opciones, casi llegando al punto en que la selección de la variedad a usar pudiera ser la decisión más importante que se haga durante la temporada. La relativamente pequeña inversión en semilla tiene una gran influencia en la capacidad de rendimiento, así como tolerancia a sequía, resistencia a insectos, calidad y otros factores que al final dan la utilidad al final de la cosecha.

La experiencia es siempre el mejor maestro. La tecnología está cambiando a un paso tan rápido que algunas variedades pueden llegar al mercado antes de que sean incluidas en las listas de variedades recomendadas de los campos experimentales. Aunque estas variedades no se encuentren en esas listas, se puede tomar información de uno o dos años de ensayos en varias localidades y decidir si una variedad sería adecuada.

La diferencia en los rendimientos entre las pruebas privadas y las oficiales a veces son objeto de cuestionamientos. Aunque la genética de una variedad sea superior a aquella de otra, el manejo y las condiciones ambientales influyen grandemente en el que una variedad se desempeñe al máximo. La genética es importante, ya que determina el potencial del rendimiento. Pero, en conjunto, el manejo y las condiciones ambientales determinan un alto porcentaje del desempeño de una variedad, ya que son lo que permiten lograr ese potencial.

El repasar los resultados de pruebas en distintas localidades y el lugar obtenido por las variedades en cada uno es complicado, ya que el medio ambiente en cada localidad es diferente. Esta interacción de variedad - medio ambiente puede ser grande o pequeña dependiendo en gran manera del clima y manejo. El ciclo de maduración de cada variedad también puede afectar esta interacción. Ya que en una prueba no se puede manejar cada variedad por separado, se debe escoger un sistema de manejo que pueda ser considerado como un sistema de producción normal. Este sistema pudiera favorecer a algunas variedades y afectar negativamente a otras. En las pruebas privadas, las variedades son manejadas según sus características transgénicas u otras características y no las características de 20 o más variedades.

¿Y que hay de las pruebas oficiales? El productor debe fijarse en el nivel de significancia estadística para ver si la diferencia es significativa. Al revisar la información, se puede tener más confianza en un análisis realizado a un nivel de significancia de 0.05 que de 0.10. Al comparar el rendimiento de fibra, una diferencia mínima significativa (DMS) de 100 kg o menos puede ser útil para seleccionar una variedad. Una DMS mayor de 100 kg, da poca información útil debido a condiciones no uniformes dentro de la prueba.

Entonces, ¿cómo podemos usar las pruebas de variedades para escoger la correcta?, la siguiente lista puede ser de utilidad:

- Ver que resultados hay disponibles de pruebas realizadas en la zona
- Verificar la fiabilidad estadística de cada prueba
- Determinar el sistema de manejo y la variedad de referencia utilizada
- En varias pruebas, fijarse en aquellas variedades que hayan quedado en los primeros 3 a 5 lugares
- De ser posible realizar pruebas en los propios campos con esas variedades
- No poner todos los huevos en una sola canasta. Es preferible sembrar varias variedades. Si no se está seguro de una nueva variedad, sembrar una superficie limitada de ella.

La clave es sembrar semilla de alta calidad de variedades en las que se tenga confianza. La diferencia inicial de costos es mínima, pero el impacto en rendimiento y utilidad puede ser enorme.
maduración de las cápsulas. Gracias a una afortunada diferencia en la sensibilidad al estrés por falta de agua entre el crecimiento vegetativo y el desarrollo de las cápsulas, un estrés por falta de agua al final del ciclo puede ser tolerado con poco o ningún efecto en el rendimiento. Esto es especialmente cierto en variedades vigorosas o cultivos retrasados en los cuales el control del crecimiento tardío es benéfico. También es posible que el alargar los intervalos entre riegos en esta época disminuya la humedad en la cubierta vegetal inferior, reduciendo la pudrición de cápsulas.

Defoliación

Aunque la defoliación no necesariamente madura al cultivo, un buen programa de defoliación puede ayudar a obtener una cosecha madura con el máximo de calidad. La manera en que el cultivo haya sido manejado en su fertilización, reguladores de crecimiento, riegos, etc. influye en la defoliación. A pesar de que las prácticas de defoliación varían de región en región, el momento oportuno de la aplicación de los defoliantes y los componentes que deben ser considerados, permanecen constantes.

Momento Oportuno de Defoliación

Esfuerzos en investigación realizados recientemente en las zonas algodoneras de los Estados Unidos, han resultado en métodos basados científicamente para determinar el momento oportuno de la defoliación. Los productores pueden emplear estas técnicas junto con la información de que superficie pueden cosechar diariamente para poder escalaronar la cosecha en vez de defoliar campos.
enteros. El medio más avanzado para determinar que tan listo está el cultivo para ser defoliado es el de Nudos Sobre Última Cápsula Reventada (NUCR). El determinar la defoliación en base a NUCR puede ser útil para maximizar rendimiento y calidad.

Pasos a seguir al usar NUCR:

- Muestrear plantas que tienen una cápsula en primera posición iniciando su apertura (reventando).
- Considerar a ese nudo como “cero”; contar los nudos por arriba de ese hasta el nudo que tenga la rama con la última bellota que se pueda considerar cosechable. NO contar los nudos hasta la terminal.
- Si la última cápsula cosechable está en segunda posición, agregar 2. Esto es debido a que una cápsula de segunda posición es de la misma edad que una cápsula de primera posición dos nudos más arriba.
- Ya que el crecimiento y maduración a menudo no son uniformes en todo el campo, es aconsejable realizar el muestreo en la zona menos madura del campo. Se deben revisar 20 plantas de esa zona.

La investigación indica que no existe pérdida de rendimiento o micronaire al defoliar cuando los NUCR llegan a 4. Las pérdidas son menores al 1% cuando se defolia a NUCR entre 4 y 5. Estas relaciones se muestran en la siguiente gráfica.

Relación entre el rendimiento relativo y reducción del micronaire en base a una defoliación a diferentes nudos sobre última cápsula reventada

La selección de los materiales más adecuados para auxiliar en la preparación del cultivo para la cosecha depende de varios factores, dependientes tanto de la planta como de las condiciones ambientales. Las variedades de algodón transgénicas, con la excepción de aquellas tolerantes a herbicidas, responden a la defoliación de manera similar a las convencionales, por lo que la información generada es aplicable a variedades transgénicas y convencionales.

Para que se pueda obtener una buena defoliación, el algodón debe tener poca humedad y
nitrógeno disponibles. Esto es difícil de lograr ya que en el caso del nitrógeno, esto depende de las cantidades aplicadas anteriormente y de la carga de cápsulas.

Cuando el fertilizante nitrogenado fué aplicado, aún no se conocía cual iba a ser la carga total. Algunos productores utilizan el análisis de peciolos para determinar el nivel de nitrógeno al final del ciclo y así programar las defoliaciones. Esto permite que se clasifiquen los campos de tal manera que los mas avanzados se defolien primero.

El clima también tiene un gran impacto en la defoliación. Los defoliantes y desecantes son herbicidas que cuando se aplican a las dosis apropiadas, provocan la caída de las hojas y favorecen la apertura de las cápsulas maduras. El clima, especialmente la temperatura, tiene una gran influencia en la eficacia del defoliante. Mientras más alta sea la temperatura, mayor será el efecto de la mayoría de los defoliantes. La experiencia muchas veces es el mejor indicador de cual será el defoliante que mejor funciones en cada campo o región.

Condiciones que Favorecen una Buena Defoliación

- Clima cálido y soleado
- Plantas ya maduras
- Bajos niveles de humedad y nitrógeno
- Ausencia de crecimiento y desarrollo foliar nuevo

COSECHA

Es necesario tener un equipo de cosecha con buen mantenimiento antes, durante y después de la cosecha. El iniciar la época de cosecha con maquinaria bien acondicionada puede ahorrar un tiempo valioso que de otra manera se perdería tratando de arreglar problemas mecánicos durante la cosecha. Una adecuada calibración y ajuste de los cabezales también son conducentes a una cosecha limpia, lo que reduce el contenido de basura en la fibra.

Consideración: La cosecha es efectiva cuando se recolecta el 85% de la fibra

En cuanto al momento oportuno para iniciar la cosecha, es importante que el campo este lo más libre posible de hojas, zacates o algún otro material extraño. Recientemente la contaminación con plástico ha sido motivo de preocupación, por la cantidad de envases de bebidas y envoltorios de comida que son arrojados como basura a campos de algodón y luego son levantados por el equipo de cosecha. Como es bien sabido, el cosechar algodón mojado por el rocío puede acarrear problemas con el equipo y con la calidad de la fibra, por lo mismo es aconsejable medir el contenido de humedad del algodón en hueso.
Consideración: si no se cuenta con un medidor de humedad, la Universidad de Carolina del Norte recomienda morder las semillas del algodón en hueso; las semillas secas tronarán al morderlas, indicando que la humedad está lo suficientemente baja como para poder cosechar.

USO Y ALMACENAMIENTO EN MÓDULOS

Unicamente algodón seco con poca basura debe ser almacenado en módulos. El monitorear la temperatura dentro del módulo durante los primeros cinco a siete días, alertará al productor sobre posibles problemas, ya que un aumento rápido y continuo de la temperatura, más de 8° C, es indicativo de alta temperatura y de la necesidad de desmotar inmediatamente ese algodón. Se recomienda que se acelere el desmotado cuando la temperatura dentro de los módulos alcance los 43° C. Otras sugerencias incluyen:

- Formar los módulos en áreas libres de grava, ramas y otros desechos
- Colocar los módulos en áreas que estén bien drenadas y de fácil acceso
- Ubicar el módulo de tal manera que el camión pueda cargarlo bien
- Cubrir los módulos con lonas impermeables
- Inspeccionar los módulos después de mal clima

Colaborar a Bajar Niveles de Insectos

Los beneficios del desvare temprano están bien documentados como la práctica cultural más efectiva para bajar los niveles de insectos hibernantes, según Roy Parker del Servicio de Extensión Agrícola de Texas. Parker menciona que las principales plagas afectadas por una cosecha y desvare temprano, son el picudo, el gusano rosado y el complejo bellotero, ya que su hábitat y fuente de alimento es destruido.

Dentro de las prácticas que Parker recomienda están:

- Realizar el desvare lo antes posible
- No permitir el rebrote de soya
- Poner atención de que las cabeceras queden bien desvaradas
- Considerar agregar insecticidas a defoliantes fosforados. Las combinaciones de cloratos con algunos insecticidas pueden crear riesgo de incendio.
- Si se está en una zona con fechas límite legales para realizar desvares, el éxito del programa depende de una estricta observancia.
MUESTREO DE SUELO POST-COSECHA

Si se sospecha de problemas con nemátodos, un agresivo programa de muestreo es recomendable, con acciones correctivas inmediatas si el problema es confirmado. Pero debido a que los nemátodos no son detectables a simple vista, los tratamientos que no estén basados en muestreos pueden ser un gasto desperdiciado. Al mismo tiempo, aquellos campos en los que las infestaciones con nemátodos estén disminuyendo rendimientos y el potencial económico necesitan ser tratados oportunamente. El muestreo para la detección de nemátodos es mas efectiva si se realiza durante el final del verano o el otoño ya que las poblaciones son mas fáciles de detectar.

Consejos para la toma y manejo de muestras:

◗ Asegure un muestreo representativo tomando muestras a lo largo del surco en áreas con un historial de cultivo variado o diferentes texturas de suelo.

◗ Como guía, forme un muestra que consista de 20 a 30 barrenos, tomados a una profundidad de entre 15 y 30 cms. y que represente alrededor de 4 hectáreas. Los barrenos deben ser bien mezclados y la muestra conjunta que se tome debe de ser de aproximadamente un litro en volumen y puesta en una bolsa de plástico.

◗ Mantener las muestras en un lugar fresco y evitar que se sequen.

◗ Mandar las muestras a un laboratorio acreditado de ser posible por un servicio de mensajería que entregue al día siguiente.
La Compañía Delta and PineLand, quisiera hacer un reconocimiento a todos aquellos individuos que iniciaron mucho del trabajo de investigación y educación de la fisiología del algodón. Esta Guía de Manejo incluye información sobre algunos de los campos en los que estas personas tuvieron grandes aportaciones, particularmente en los conceptos de monitoreo del algodón, mapeo de plantas, indices de crecimiento, relación entre Altura y Número de Nudos, relación Oferta/Demanda de Nutrientes, Máxima Distancia entre Nudos, número de nudos sobre la flor blanca en primera posición y número de nudos sobre última cápsula abierta en primera posición.

En orden alfabético, mencionamos a aquellos investigadores que han hecho las mayores aportaciones en esos temas:

Dr. Fred Bourland, Universidad de Arkansas
Dr. Kater Hake, Delta and PineLand Co.
Dr. Johnie Jenkins, Departamento de Agricultura de los Estados Unidos, Starkville, Mississippi
Dr. Tom Kerby, Delta and PineLand Co.
Dr. Juan Landívar, Delta and PineLand Co.
Dr. Jeff Sivertooth, Universidad de Arizona

Mucha de la información incluida en esta edición de la Guía de Manejo de Algodón, fue publicada con anterioridad por una subsidiaria en los Estados Unidos de Delta and PineLand Co. Los agrónomos de la compañía en las regiones del mundo de habla hispana, incluyendo al Dr. Juan Landívar, el Ing. Ari Mateos y el Dr. Jesús Rossi, han traducido y adaptado la información de este texto original para las regiones de habla hispana en las que Delta and PineLand Co. está presente.
ÍNDICE

abscisión 29, 34, 37, 41
abscisión fisiológica 29, 41
ácidos 38
áfidos 37, 38
Alternaria spp. 52
altura 10, 27, 30, 31, 32, 39, 43
aplicación dirigida de herbicida 14, 17, 26, 36, 37
aplicaciones foliares 34, 44
auxiliares de cosecha 42, 56, 57
azufre 16, 34
bajas densidades 23
Bollgard 8, 29, 37, 47, 48, 49, 50
boro 16, 34
calcio 16, 34
calidad de fibra 10, 30, 34, 41, 42, 52, 56, 58
caracteres agronómicos 9, 10
caracteres transgénicos 7
carbohidratos 24, 25, 26, 32, 41
carga de cápsulas 25, 29, 32, 35, 40, 41, 44, 46, 54, 58
chinches 29, 37, 49, 51
cloruro de mepiquat 23, 30, 31, 32, 33, 39, 40, 43, 47, 54
compactación 25
complejo bellotero 29, 38, 47, 48, 49, 50, 59
control de malezas 13, 14, 35, 36, 37
cotiledón 17, 27, 38
cultivo, labranza 14, 20, 25, 26, 35
cut out 23, 25, 28, 30, 53, 54
daño por frío 12, 20, 25
DD 60’s (Unidades Calor base 60° F) 11, 19, 20, 23, 24, 26, 27, 28, 29, 40, 54
deficiencia 34, 44, 46
defoliación 23, 51, 53, 56, 57, 58
densidad 15, 21, 23, 29
densidad de siembra 15
desnitrificación 44
destrucción de residuos 59
días grado (ver DD60’s)
diferencial de alturas 14, 37
Diplodia 51
doble gen (B/ RR) 8
emergencia 9, 11, 12, 13, 14, 15, 17, 19, 20, 24, 35, 36
encostramiento 14, 20
ergía 9, 11, 23, 24, 25, 35, 40, 43
enfermedad 10, 11, 12, 17, 18, 19, 20, 35, 51, 52
enfermedades de plántulas 12, 17, 18, 20, 52
entrenudo 26, 27, 31, 32, 33, 34, 39, 41, 43
espaciamiento entre surcos 15, 21, 22
estrés por falta de agua 24, 26, 35, 40, 42, 43, 46, 54, 56
fertilidad 16, 23, 24, 30, 33, 34, 44, 45, 54, 56
final de uso de insecticidas 54
fósforo 34
fotosíntesis 24, 25, 35
fungicida 17, 18, 19
Índice

Glomerella gossypii 51

gusano rosado (Pectinophora gossypiella) 48, 49, 50, 59

gusano soldado (Spodoptera spp.) 38, 39

gusano trozador (Agrotis spp.) 37, 38

herbicidas de pre-emergencia 13, 14, 34, 36

herbicidas residuales 13, 14, 20, 36

hibernación 59

insectos 8, 10, 20, 25, 27, 28, 29, 30, 35, 37, 38, 47, 48, 49, 50, 51, 52, 54, 59

insumos 7, 8, 39, 41

irrigación 15, 16, 23, 25, 27, 35, 46, 47, 48, 54, 56

lóculos (gajos de la cápsula) endurecidos 52

madurez 10, 23, 30, 34, 36, 43, 46, 54, 55, 57

manejo de resistencia 47

marchitez por Fusarium 10, 19, 51, 52

marchitez por Verticillium 10

maxima distancia de entrenudo 27, 31, 33, 39, 41, 43

método del presupuesto de agua 46

micronaire 10, 30, 34, 42, 57

módulos 59

muestreo de pecíolos 16, 33, 34, 44, 45, 46, 58

nemátodo 19

nudos sobre cápsula reventada 56, 57

nudos sobre flor blanca 30, 39, 40, 43, 53, 54

nutrientes 16, 17, 25, 26

oferta y demanda 24, 25, 39, 41

pH 17, 26, 34, 44

picudo del algodón (Anthonomus grandis) 37, 38, 48, 49, 51, 59

Pix 23, 30, 31, 32, 33, 39, 40, 43, 47, 54

población de plantas 15, 21, 22, 28, 30, 51

porciento de fibra 10

potasio 16, 33, 34, 45, 46

profundidad de la semilla 12, 14, 18, 20

profundidad de siembra 12, 14, 18, 20

pudrición de cápsulas 42, 51, 52

raíces/enraizamiento 12, 14, 17, 19, 25, 26, 34, 35, 36, 46, 47

rebrote 53, 54, 59

refugios 47

reguladores de crecimiento 23, 30, 31, 32, 33, 39, 40, 43, 47, 54

reniforme 19

resiembra 13, 15, 17, 19, 20

resistencia 10, 34, 42

retención de botones 29, 32, 37, 39

Rhizoctonia spp. 17, 52

rotación 14

Roundup Ready 8, 13, 14, 30, 36, 37

selección de variedades 5, 7, 55

semillas por metro de surco 15

sequia 13, 20, 23, 25, 29, 43, 55

temperatura de suelo 9, 11, 12, 18, 20

thrips 29, 37, 38

tolerante a herbicida 14, 35, 57

umbrales económicos 37, 48

urea 44

uso de herbicida 8, 13, 14, 17, 20, 30, 34, 35, 36, 37, 57, 58

vigor 10, 22, 28, 32, 40, 41, 45, 54

Xanthomonas spp. 52